Regulation of protein function by S-glutathiolation in response to oxidative and nitrosative stress

被引:614
作者
Klatt, P [1 ]
Lamas, S [1 ]
机构
[1] CSIC, Ctr Invest Biol, Inst Reina Sofia Invest Nefrol, Dept Estruct & Func Prot, E-28006 Madrid, Spain
来源
EUROPEAN JOURNAL OF BIOCHEMISTRY | 2000年 / 267卷 / 16期
关键词
cysteine; glutathione; nitric oxide; reactive nitrogen species; reactive oxygen species;
D O I
10.1046/j.1432-1327.2000.01601.x
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Protein S-glutathiolation, the reversible covalent addition of glutathione to cysteine residues on target proteins, is emerging as a candidate mechanism by which both changes in the intracellular redox state and the generation of reactive oxygen and nitrogen species may be transduced into a functional response. This review will provide an introduction to the concepts of oxidative and nitrosative stress and outline the molecular mechanisms of protein regulation by oxidative and nitrosative thiol-group modifications. Special attention will be paid to recently published work supporting a role for S-glutathiolation in stress signalling pathways and in the adaptive cellular response to oxidative and nitrosative stress. Finally, novel insights into the molecular mechanisms of S-glutathiolation as well as methodological problems related to the interpretation of the biological relevance of this post-translational protein modification will be discussed.
引用
收藏
页码:4928 / 4944
页数:17
相关论文
共 225 条
[1]   REDOX REGULATION OF FOS AND JUN DNA-BINDING ACTIVITY INVITRO [J].
ABATE, C ;
PATEL, L ;
RAUSCHER, FJ ;
CURRAN, T .
SCIENCE, 1990, 249 (4973) :1157-1161
[2]   Oxidative stress and gene regulation [J].
Allen, RG ;
Tresini, M .
FREE RADICAL BIOLOGY AND MEDICINE, 2000, 28 (03) :463-499
[3]   Peroxynitrite-dependent tryptophan nitration [J].
Alvarez, B ;
Rubbo, H ;
Kirk, M ;
Barnes, S ;
Freeman, BA ;
Radi, R .
CHEMICAL RESEARCH IN TOXICOLOGY, 1996, 9 (02) :390-396
[4]  
AMELLE DR, 1995, ARCH BIOCHEM BIOPHYS, V318, P279
[5]   Protection against peroxynitrite [J].
Arteel, GE ;
Briviba, K ;
Sies, H .
FEBS LETTERS, 1999, 445 (2-3) :226-230
[6]   Regulation of the OxyR transcription factor by hydrogen peroxide and the cellular thiol -: disulfide status [J].
Åslund, F ;
Zheng, M ;
Beckwith, J ;
Storz, G .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (11) :6161-6165
[7]   Bridge over troubled waters:: Sensing stress by disulfide bond formation [J].
Åslund, F ;
Beckwith, J .
CELL, 1999, 96 (06) :751-753
[8]   Epidermal growth factor (EGF)-induced generation of hydrogen peroxide - Role in EGF receptor-mediated tyrosine phosphorylation [J].
Bae, YS ;
Kang, SW ;
Seo, MS ;
Baines, IC ;
Tekle, E ;
Chock, PB ;
Rhee, SG .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (01) :217-221
[9]   Requirements for heme and thiols for the nonenzymatic modification of nitrotyrosine [J].
Balabanli, B ;
Kamisaki, Y ;
Martin, E ;
Murad, F .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (23) :13136-13141
[10]   Thioltransferase (glutaredoxin) reactivates the DNA-binding activity of oxidation-inactivated nuclear factor I [J].
Bandyopadhyay, S ;
Starke, DW ;
Mieyal, JJ ;
Gronostajski, RM .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (01) :392-397