On quasianalytic classes of Gelfand-Shilov type. Parametrix and convolution

被引:24
作者
Pilipovic, Stevan [1 ]
Prangoski, Bojan [2 ]
Vindas, Jasson [3 ]
机构
[1] Univ Novi Sad, Dept Math & Informat, Trg Dositeja Obradovica 4, Novi Sad 21000, Serbia
[2] Univ Ss Cyril & Methodius, Fac Mech Engn, Karpos 2 Bb, Skopje 1000, Macedonia
[3] Univ Ghent, Dept Math, Krijgslaan 281 Gebouw S22, B-9000 Ghent, Belgium
来源
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES | 2018年 / 116卷
关键词
Convolution; Parametrix method; Quasianalytic classes; Ultradifferentiable functions; Ultradistributions; Gelfand-Shilov spaces; APPROXIMATION PROPERTY; BANACH-SPACES; MIXED-NORM; ULTRADISTRIBUTIONS; DISTRIBUTIONS; TRANSFORM; PRODUCT; FORMULA;
D O I
10.1016/j.matpur.2017.10.008
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We develop a convolution theory for quasianalytic ultradistributions of Gelfand-Shilov type. We also construct a special class of ultrapolynomials, and use it as a base for the parametrix method in the study of new topological and structural properties of several quasianalytic spaces of functions and ultradistributions. In particular, our results apply to Fourier hyperfunctions and Fourier ultra-hyperfunctions. (C) 2017 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:174 / 210
页数:37
相关论文
共 43 条
[1]  
[Anonymous], 2015, NOVI SAD J MATH
[2]  
[Anonymous], 1973, Bull. London Math. Soc.
[3]  
[Anonymous], 1982, Lecture Notes in Mathematics
[4]  
[Anonymous], 1972, NUCL LOCALLY CONVEX
[5]   Convolution of vector-valued distributions: A survey and comparison [J].
Bargetz, C. ;
Ortner, N. .
DISSERTATIONES MATHEMATICAE, 2013, (495) :5-+
[6]  
Carmichael R. D., 2007, Boundary values and convolution in ultradistribution spaces
[7]   A multivariate Faa di Bruno formula with applications [J].
Constantine, GM ;
Savits, TH .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1996, 348 (02) :503-520
[8]   EIGENFUNCTION EXPANSIONS OF ULTRADIFFERENTIABLE FUNCTIONS AND ULTRADISTRIBUTIONS [J].
Dasgupta, Aparajita ;
Ruzhansky, Michael .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2016, 368 (12) :8481-8498
[9]   Gevrey functions and ultradistributions on compact Lie groups and homogeneous spaces [J].
Dasgupta, Aparajita ;
Ruzhansky, Michael .
BULLETIN DES SCIENCES MATHEMATIQUES, 2014, 138 (06) :756-782
[10]   Approximation property and nuclearity on mixed-norm Lp, modulation and Wiener amalgam spaces [J].
Delgado, J. ;
Ruzhansky, M. ;
Wang, B. .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2016, 94 :391-408