Geometric Representation of the Group of Entropy Vectors in Nonextensive Statistical Mechanics

被引:4
作者
Zaripov, R. G. [1 ]
机构
[1] Russian Acad Sci, Kazan Sci Ctr, Inst Mech & Machine Bldg, Kazan, Russia
关键词
nonextensivity; four-dimensional geometry; group; entropy; Hadamard matrix; THERMODYNAMICS; SYSTEMS;
D O I
10.1007/s11182-014-0318-3
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A geometric representation of the group of nonextensive entropy vectors in four-dimensional space is derived. The three-dimensional hyperbolic entropy vector and the vector-parameter of hyperbolic angles are determined. A composition law for hyperbolic entropy vectors with quadratic nonlinearity is given and an interrelationship with three distributions characterizing the system is presented.
引用
收藏
页码:861 / 869
页数:9
相关论文
共 20 条
  • [1] [Anonymous], 2009, SPRINGER
  • [2] Balan V., 2012, J MODERN PHYS, V3, P1314, DOI [10.4236/jmp.2012.329170, DOI 10.4236/JMP.2012.329170]
  • [3] Bourbaki N, 2004, ELEMENTS MATH INTEGR
  • [4] An introduction to commutative quaternions
    Catoni, Francesco
    Cannata, Roberto
    Zarnpetti, Paolo
    [J]. ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2006, 16 (01) : 1 - 28
  • [5] GENERALIZED INFORMATION FUNCTIONS
    DAROCZY, Z
    [J]. INFORMATION AND CONTROL, 1970, 16 (01): : 36 - &
  • [6] Feder J., 1988, Fractals
  • [7] Havrda J., 1967, Kybernetika, V3, P30
  • [8] Distributions and channel capacities in generalized statistical mechanics
    Landsberg, PT
    Vedral, V
    [J]. PHYSICS LETTERS A, 1998, 247 (03) : 211 - 217
  • [9] Naudts J, 2011, GENERALISED THERMOSTATISTICS, P1, DOI 10.1007/978-0-85729-355-8
  • [10] Pavlov D.G., 2007, Space-Time Structure. Algebra and Geometry