A compact design for velocity-map imaging of energetic electrons and ions

被引:6
作者
Schomas, D. [1 ]
Rendler, N. [1 ]
Krull, J. [1 ]
Richter, R. [2 ]
Mudrich, M. [3 ]
机构
[1] Univ Freiburg, Phys Inst, Freiburg, Germany
[2] Elettra Sincrotrone Trieste, Trieste, Italy
[3] Aarhus Univ, Dept Phys & Astron, Aarhus, Denmark
关键词
PHOTOELECTRON; DYNAMICS;
D O I
10.1063/1.4984076
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We present a compact design for a velocity-map imaging spectrometer for energetic electrons and ions. The standard geometry by Eppink and Parker [Rev. Sci. Instrum. 68, 3477 (1997)] is augmented by just two extended electrodes so as to realize an additional einzel lens. In this way, for a maximum electrode voltage of 7 kV, we experimentally demonstrate imaging of electrons with energies up to 65 eV. Simulations show that energy acceptances less than or similar to 270 and less than or similar to 1200 eV with an energy resolution Delta E/E less than or similar to 5% are achievable for electrode voltages <= 20 kV when using diameters of the position-sensitive detector of 42 and 78 mm, respectively. Published by AIP Publishing.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] Spectroscopic study on nonradiative transition and ionization of 5-methylpyrimidine at S1 probed by the slow-electron velocity-map imaging (SEVI) technique
    Lee, Jeongmook
    Kim, So-Yeon
    Kim, Sang Kyu
    CHEMICAL PHYSICS LETTERS, 2013, 568 : 36 - 41
  • [32] Transferring the attoclock technique to velocity map imaging
    Weger, Matthias
    Maurer, Jochen
    Ludwig, Andre
    Gallmann, Lukas
    Keller, Ursula
    OPTICS EXPRESS, 2013, 21 (19): : 21981 - 21990
  • [33] Low-lying vibronic level structure of the ground state of the methoxy radical: Slow electron velocity-map imaging (SEVI) spectra and Koppel-Domcke-Cederbaum (KDC) vibronic Hamiltonian calculations
    Weichman, Marissa L.
    Cheng, Lan
    Kim, Jongjin B.
    Stanton, John F.
    Neumark, Daniel M.
    JOURNAL OF CHEMICAL PHYSICS, 2017, 146 (22)
  • [34] A large aperture magnification lens for velocity map imaging
    Zhang, Yongwei
    Yang, Chung-Hsin
    Wu, Shiou-Min
    van Roij, Andre
    van der Zande, Wim J.
    Parker, David H.
    Yang, Xueming
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2011, 82 (01)
  • [35] Near-ambient pressure velocity map imaging
    Chien, Tzu-En
    Hohmann, Lea
    Harding, Dan J.
    JOURNAL OF CHEMICAL PHYSICS, 2022, 157 (03)
  • [36] Velocity map imaging of ion-molecule reactions
    Wester, Roland
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2014, 16 (02) : 396 - 405
  • [37] Gas-Phase Retro-Diels-Alder Reactions of Cyclohexene, 1-Methylcyclohexene, and 4-Methylcyclohexene following Photoexcitation at 193 nm: A Velocity-Map Imaging Study
    Gardiner, Sara H.
    Lipciuc, M. Laura
    Vallance, Claire
    JOURNAL OF PHYSICAL CHEMISTRY A, 2015, 119 (50) : 12218 - 12223
  • [38] A velocity map imaging study of the photodissociation of the methyl iodide cation
    Marggi Poullain, S.
    Chicharro, D. V.
    Gonzalez-Vazquez, J.
    Rubio-Lago, L.
    Banares, L.
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2017, 19 (11) : 7886 - 7896
  • [39] Clustering and multiphoton effects in velocity map imaging of methyl chloride
    Vinklarek, I. S.
    Rakovsky, J.
    Poterya, V
    Farnik, M.
    MOLECULAR PHYSICS, 2021, 119 (1-2)
  • [40] A cryogenic cylindrical ion trap velocity map imaging spectrometer
    Hua, Zefeng
    Feng, Shaowen
    Zhou, Zhengfang
    Liang, Hao
    Chen, Yang
    Zhao, Dongfeng
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2019, 90 (01)