Predicting Fracture Toughness of TRIP 800 Using Phase Properties Characterized by In-Situ High-Energy X-Ray Diffraction

被引:7
|
作者
Soulami, A. [1 ]
Choi, K. S. [1 ]
Liu, W. N. [1 ]
Sun, X. [1 ]
Khaleel, M. A. [1 ]
Ren, Y. [2 ]
Wang, Y. D. [3 ]
机构
[1] Pacific NW Natl Lab, Computat Sci & Math Div, Richland, WA 99352 USA
[2] Argonne Natl Lab, Xray Sci Div, Argonne, IL 60439 USA
[3] Northeastern Univ, Dept Mat Sci, Shenyang 110004, Peoples R China
来源
METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE | 2010年 / 41A卷 / 05期
基金
美国能源部;
关键词
INDUCED PLASTICITY TRIP; MARTENSITIC-TRANSFORMATION; DEFORMATION-BEHAVIOR; STEELS; MODEL; RESISTANCE; DUCTILITY; MICRO;
D O I
10.1007/s11661-010-0208-4
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Transformation-induced plasticity (TRIP) steel is a typical representative of first generation advanced high-strength steel, which exhibits a combination of high strength and excellent ductility due to its multiphase microstructure. In this article, we study the crack propagation behavior and fracture resistance of a TRIP 800 steel using a microstructure-based finite element method with the various phase properties characterized by in-situ high-energy X-ray diffraction (HEXRD) technique. Uniaxial tensile tests on the notched TRIP 800 sheet specimens were also conducted, and the experimentally measured tensile properties and R curves (resistance curves) were used to calibrate the modeling parameters and to validate the overall modeling results. The comparison between the simulated and experimentally measured results suggests that the micromechanics based modeling procedure can well capture the overall complex crack propagation behaviors and the fracture resistance of TRIP steels. The methodology adopted here may be used to estimate the fracture resistance of various multiphase materials.
引用
收藏
页码:1261 / 1268
页数:8
相关论文
共 50 条
  • [41] Quantitative In Situ Studies of Dynamic Fracture in Brittle Solids Using Dynamic X-ray Phase Contrast Imaging
    Leong, A. F. T.
    Robinson, A. K.
    Fezzaa, K.
    Sun, T.
    Sinclair, N.
    Casem, D. T.
    Lambert, P. K.
    Hustedt, C. J.
    Daphalapurkar, N. P.
    Ramesh, K. T.
    Hufnagel, T. C.
    EXPERIMENTAL MECHANICS, 2018, 58 (09) : 1423 - 1437
  • [42] In-situ investigation of the evolution of microstructure and texture during load reversal of commercially pure titanium using synchrotron X-ray diffraction
    Krishna, M., V
    Sahu, Vivek Kumar
    Ghosh, Atasi
    Brokmeier, Heinz-Guenter
    Gurao, Nilesh Prakash
    MATERIALS CHARACTERIZATION, 2020, 159
  • [43] Electrochemical Reaction of Lithium with Nanostructured Silicon Anodes: A Study by In-Situ Synchrotron X-Ray Diffraction and Electron Energy-Loss Spectroscopy
    Wang, Feng
    Wu, Lijun
    Key, Baris
    Yang, Xiao-Qing
    Grey, Clare P.
    Zhu, Yimei
    Graetz, Jason
    ADVANCED ENERGY MATERIALS, 2013, 3 (10) : 1324 - 1331
  • [44] Reversible deformation-induced martensitic transformation in Al0.6CoCrFeNi high-entropy alloy investigated by in situ synchrotron based high-energy X-ray diffraction
    Ma, Lili
    Wang, Lu
    Nie, Zhihua
    Wang, Fuchi
    Xue, Yunfei
    Zhou, Jinlian
    Cao, Tangqing
    Wang, Yandong
    Ren, Yang
    ACTA MATERIALIA, 2017, 128 : 12 - 21
  • [45] Quantitative analysis of crystal scale deformation heterogeneity during cyclic plasticity using high-energy X-ray diffraction and finite-element simulation
    Obstalecki, Mark
    Wong, Su Leen
    Dawson, Paul R.
    Miller, Matthew P.
    ACTA MATERIALIA, 2014, 75 : 259 - 272
  • [46] Elucidating the temperature dependence of TRIP in Q&P steels using synchrotron X-Ray diffraction, constituent phase properties, and strain-based kinetics models
    Finfrock, Christopher B.
    Ellyson, Benjamin
    Likith, Sri Ranga Jai
    Smith, Douglas
    Rietema, Connor J.
    Saville, Alec I.
    Thrun, Melissa M.
    Becker, C. Gus
    Araujo, Ana L.
    Pavlina, Erik J.
    Hu, Jun
    Park, Jun-Sang
    Clarke, Amy J.
    Clarke, Kester D.
    ACTA MATERIALIA, 2022, 237
  • [47] Carbon heterogeneities in austenite during Quenching & Partitioning (Q&P) process revealed by in situ High Energy X-Ray Diffraction (HEXRD) experiments
    Allain, Sebastien Y. P.
    Gaudez, Steve
    Geandier, Guillaume
    Danoix, Frederic
    Soler, Michel
    Goune, Mohamed
    SCRIPTA MATERIALIA, 2020, 181 (181) : 108 - 114
  • [48] In situ high-energy X-ray studies of magnetic-field-induced phase transition in a ferromagnetic shape memory Ni-Co-Mn-In alloy
    Wang, Y. D.
    Huang, E. W.
    Ren, Y.
    Nie, Z. H.
    Wang, G.
    Liu, Y. D.
    Deng, J. N.
    Choo, H.
    Liaw, P. K.
    Brown, D. E.
    Zuo, L.
    ACTA MATERIALIA, 2008, 56 (04) : 913 - 923
  • [49] Combining high-energy X-ray diffraction with Surface Optical Reflectance and Planar Laser Induced Fluorescence for operando catalyst surface characterization
    Pfaff, S.
    Zhou, J.
    Hejral, U.
    Gustafson, J.
    Shipilin, M.
    Albertin, S.
    Blomberg, S.
    Gutowski, O.
    Dippel, A.
    Lundgren, E.
    Zetterberg, J.
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2019, 90 (03)
  • [50] Structure of levitated Si-Ge melts studied by high-energy x-ray diffraction in combination with reverse Monte Carlo simulations
    Pozdnyakova, Irina
    Roik, Oleksandr
    Drewitt, James W. E.
    Bytchkov, Aleksei
    Kargl, Florian
    Jahn, Sandro
    Brassamin, Severine
    Hennet, Louis
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2021, 33 (24)