Genus fields of real biquadratic fields

被引:10
作者
Yue, Qin [1 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, Dept Math, Nanjing 210016, Peoples R China
关键词
Class group; Hilbert genus field; TAME KERNELS;
D O I
10.1007/s11139-009-9159-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let K = Q(root p, root d) be a real biquadratic field with prime p equivalent to 1 mod 4 and positive integer d equivalent to 3 mod 4. In this paper, we give the Hilbert genus field of K explicitly.
引用
收藏
页码:17 / 25
页数:9
相关论文
共 50 条
  • [21] Lower bound for class numbers of certain real quadratic fields
    Mohit Mishra
    Czechoslovak Mathematical Journal, 2023, 73 : 1 - 14
  • [22] On the 2-primary part of tame kernels of real quadratic fields
    Xiao Yun Cheng
    Xue Jun Guo
    Acta Mathematica Sinica, English Series, 2016, 32 : 807 - 812
  • [23] On the 2-primary Part of Tame Kernels of Real Quadratic Fields
    Xiao Yun CHENG
    Xue Jun GUO
    Acta Mathematica Sinica,English Series, 2016, 32 (07) : 807 - 812
  • [24] On the 2-primary Part of Tame Kernels of Real Quadratic Fields
    Cheng, Xiao Yun
    Guo, Xue Jun
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2016, 32 (07) : 807 - 812
  • [25] An application of Birch-Tate formula to tame kernels of real quadratic number fields
    Deng, Li-Tong
    Li, Yong-Xiong
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2024, 134 (02):
  • [26] Iwasawa module of the cyclotomic Z2-extension of certain real quadratic fields
    Avila, Josue
    RAMANUJAN JOURNAL, 2025, 67 (01)
  • [27] REAL QUADRATIC NUMBER FIELDS WITH METACYCLIC HILBERT 2-CLASS FIELD TOWER
    Essahel, Said
    Dakkak, Ahmed
    Mouhib, Ali
    MATHEMATICA BOHEMICA, 2019, 144 (02): : 177 - 190
  • [28] The exponent three class group problem for some real cyclic cubic number fields
    Louboutin, S
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2002, 130 (02) : 353 - 361
  • [29] Principalization of 2-class groups of type (2,2,2) of biquadratic fields Q(√p1p2q, √-1)
    Azizi, Abdelmalek
    Zekhnini, Abdelkader
    Taous, Mohammed
    Mayer, Daniel C.
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2015, 11 (04) : 1177 - 1215
  • [30] From Polya fields to Polya groups (II) Non-Galois number fields
    Chabert, Jean-Luc
    Halberstadt, Emmanuel
    JOURNAL OF NUMBER THEORY, 2021, 220 : 295 - 319