Improved Force Spectroscopy Using Focused-Ion-Beam-Modified Cantilevers

被引:14
|
作者
Faulk, J. K. [1 ,2 ]
Edwards, D. T. [1 ,2 ]
Bull, M. S. [1 ,2 ]
Perkins, T. T. [1 ,2 ]
机构
[1] NIST, JILA, Boulder, CO 80305 USA
[2] Univ Colorado, Boulder, CO 80309 USA
来源
SINGLE-MOLECULE ENZYMOLOGY: NANOMECHANICAL MANIPULATION AND HYBRID METHODS | 2017年 / 582卷
关键词
BIOLOGICAL APPLICATIONS; PROTEIN MOLECULE; SINGLE PROTEIN; MICROSCOPY; STABILITY; ADHESION; BONDS; TITIN;
D O I
10.1016/bs.mie.2016.08.007
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Atomic force microscopy (AFM) is widely used in biophysics, including force-spectroscopy studies of protein folding and protein-ligand interactions. The precision of such studies increases with improvements in the underlying quality of the data. Currently, data quality is limited by the mechanical properties of the cantilever when using a modern commercial AFM. The key tradeoff is force stability vs short-term force precision and temporal resolution. Here, we present a method that avoids this compromise: efficient focused-ion-beam (FIB) modification of commercially available cantilevers. Force precision is improved by reducing the cantilever's hydrodynamic drag, and force stability is improved by reducing the cantilever stiffness and by retaining a cantilever's gold coating only at its free end. When applied to a commonly used short cantilever (L = 40 mu m), we achieved sub-pN force precision over 5 decades of bandwidth (0.01-1000 Hz) without significantly sacrificing temporal resolution (similar to 75 mu s). Extending FIB modification to an ultrashort cantilever (L = 9 mu m) also improved force precision and stability, while maintaining 1-mu s-scale temporal resolution. Moreover, modifying ultrashort cantilevers also eliminated their inherent underdamped high-frequency motion and thereby avoided applying a rapidly oscillating force across the stretched molecule. Importantly, fabrication of FIB-modified cantilevers is accessible after an initial investment in training. Indeed, undergraduate researchers routinely modify 2-4 cantilevers per hour with the protocol detailed here. Furthermore, this protocol offers the individual user the ability to optimize a cantilever for a particular application. Hence, we expect FIB-modified cantilevers to improve AFM-based studies over broad areas of biophysical research.
引用
收藏
页码:321 / 351
页数:31
相关论文
共 50 条
  • [1] Customized silicon cantilevers for Casimir force experiments using focused ion beam milling
    Castillo-Garza, R.
    Chang, Chia-Cheng
    Yan, Dong
    Mohideen, U.
    60 YEARS OF THE CASIMIR EFFECT, 2009, 161
  • [2] Integrating micro- and nanoelectrodes into atomic force microscopy cantilevers using focused ion beam techniques
    Lugstein, A
    Bertagnolli, E
    Kranz, C
    Kueng, A
    Mizaikoff, B
    APPLIED PHYSICS LETTERS, 2002, 81 (02) : 349 - 351
  • [3] Improved Single Molecule Force Spectroscopy Using Micromachined Cantilevers
    Bull, Matthew S.
    Sullan, Ruby May A.
    Li, Hongbin
    Perkins, Thomas T.
    ACS NANO, 2014, 8 (05) : 4984 - 4995
  • [4] Selective growth of InP on focused-ion-beam-modified GaAs surface by hydride vapor phase epitaxy
    Sun, YT
    Messmer, ER
    Lourdudoss, S
    Ahopelto, J
    Rennon, S
    Reithmaier, JP
    Forchel, A
    APPLIED PHYSICS LETTERS, 2001, 79 (12) : 1885 - 1887
  • [5] High resolution magnetic force microscopy using focused ion beam modified tips
    Phillips, GN
    Siekman, M
    Abelmann, L
    Lodder, JC
    APPLIED PHYSICS LETTERS, 2002, 81 (05) : 865 - 867
  • [6] Large area microcorrals and cavity formation on cantilevers using a focused ion beam
    Saraf, Laxmikant V.
    Britt, David W.
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2011, 29 (05):
  • [7] Controlled manipulation of carbon nanopillars and cantilevers by focused ion beam
    Tripathi, Sarvesh K.
    Shukla, Neeraj
    Dhamodaran, S.
    Kulkarni, Vishwas N.
    NANOTECHNOLOGY, 2008, 19 (20)
  • [8] Focused ion beam fabrication of thermally actuated bimorph cantilevers
    Teng, J
    Prewett, PD
    SENSORS AND ACTUATORS A-PHYSICAL, 2005, 123-24 : 608 - 613
  • [9] Focused ion beam-nanomachined probes for improved electric force microscopy
    Menozzi, C
    Gazzadi, GC
    Alessandrini, A
    Facci, P
    ULTRAMICROSCOPY, 2005, 104 (3-4) : 220 - 225
  • [10] Improved Single-Molecule Force Spectroscopy Using Micro-Machined Cantilevers
    Bull, Matthew S.
    Li, Hongbin
    Perkins, Thomas T.
    BIOPHYSICAL JOURNAL, 2014, 106 (02) : 224A - 224A