John Disks and K-Quasiconformal Harmonic Mappings

被引:12
作者
Chen, Shaolin [1 ]
Ponnusamy, Saminathan [2 ]
机构
[1] Hengyang Normal Univ, Coll Math & Stat, Hengyang 421008, Hunan, Peoples R China
[2] Indian Stat Inst, Chennai Ctr, SETS, MGR Knowledge City, CIT Campus, Chennai 600113, Tamil Nadu, India
基金
中国国家自然科学基金;
关键词
K-quasiconformal harmonic mappings; John disk; Pommerenke interior domain; Pre-Schwarzian derivative; PRE-SCHWARZIAN; CRITERIA; DOMAINS;
D O I
10.1007/s12220-016-9727-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The main aim of this article is to establish certain relationships between K-quasiconformal harmonic mappings and John disks. The results of this article are the generalizations of the corresponding results of Pommerenke
引用
收藏
页码:1468 / 1488
页数:21
相关论文
共 23 条
[1]  
Ahlfors L. V., 1962, P AM MATH SOC, V13, P975, DOI [DOI 10.2307/2034099, DOI 10.1090/S0002-9939-1962-0148896-1]
[2]  
[Anonymous], 1973, QUASICONFORMAL MAPPI, DOI DOI 10.1007/978-3-642-65513-5
[3]  
[Anonymous], 1992, GRUNDLEHREN MATH WIS
[4]  
[Anonymous], 1988, LECT NOTES MATH
[5]  
[Anonymous], 1971, LECT N DIMENSIONAL Q
[6]  
BECKER J, 1984, J REINE ANGEW MATH, V354, P74
[7]   Linear Connectivity, Schwarz-Pick Lemma and Univalency Criteria for Planar Harmonic Mapping [J].
Chen, Shao Lin ;
Ponnusamy, Saminathan ;
Rasila, Antti ;
Wang, Xian Tao .
ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2016, 32 (03) :297-308
[8]  
Chuaqui M, 1996, J REINE ANGEW MATH, V471, P77
[9]   The Schwarzian derivative for harmonic mappings [J].
Chuaqui, M ;
Duren, P ;
Osgood, B .
JOURNAL D ANALYSE MATHEMATIQUE, 2003, 91 (1) :329-351
[10]  
CLUNIE J, 1984, ANN ACAD SCI FENN-M, V9, P3