Type-1 and Type-2 fuzzy logic controller design using a Hybrid PSO-GA optimization method

被引:55
作者
Martinez-Soto, Ricardo [1 ]
Castillo, Oscar [1 ]
Aguilar, Luis T. [2 ]
机构
[1] Tijuana Inst Technol, Fracc Tomas Aquino 22379, Tijuana, Mexico
[2] Inst Politecn Nacl, Mesa De Otay Tijuana 22510, Tijuana, Mexico
关键词
Fuzzy logic controller; Genetic algorithm; Particle swarm optimization; PARTICLE SWARM OPTIMIZATION; GENETIC ALGORITHM; SYSTEMS;
D O I
10.1016/j.ins.2014.07.012
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper we propose a Hybrid PSO-GA optimization method for automatic design of fuzzy logic controllers (FLC) to minimize the steady state error of a plant's response. We test the optimal FLC obtained by the Hybrid PSO-GA method using benchmark control plants and an autonomous mobile robot for trajectory tracking control. The bio-inspired method is used to find the parameters of the membership functions of the FLC to obtain the optimal controller for the respective plants. Simulation results show the feasibility of the proposed approach for these control applications. A comparison is also made among the proposed Hybrid PSO-GA, with GA and PSO to determine if there is a significant difference in the results. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:35 / 49
页数:15
相关论文
共 35 条
[1]   Integrating particle swarm optimization with genetic algorithms for solving nonlinear optimization problems [J].
Abd-El-Wahed, W. F. ;
Mousa, A. A. ;
El-Shorbagy, M. A. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2011, 235 (05) :1446-1453
[2]   A multi-objective genetic algorithm for tuning and rule selection to obtain accurate and compact linguistic fuzzy rule-based systems [J].
Alcala, R. ;
Gacto, M. J. ;
Herrera, F. ;
Alcala-Fdez, J. .
INTERNATIONAL JOURNAL OF UNCERTAINTY FUZZINESS AND KNOWLEDGE-BASED SYSTEMS, 2007, 15 (05) :539-557
[3]   A proposal for the genetic lateral tuning of linguistic fuzzy systems and its interaction with rule selection [J].
Alcala, Rafael ;
Alcala-Fdez, Jesus ;
Herrera, Francisco .
IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2007, 15 (04) :616-635
[4]  
Angeline P. J., 1998, Evolutionary Programming VII. 7th International Conference, EP98. Proceedings, P601, DOI 10.1007/BFb0040811
[5]   Using selection to improve particle swarm optimization [J].
Angeline, PJ .
1998 IEEE INTERNATIONAL CONFERENCE ON EVOLUTIONARY COMPUTATION - PROCEEDINGS, 1998, :84-89
[6]  
[Anonymous], 1993, INTRO FUZZY CONTROL, DOI DOI 10.1007/978-3-662-11131-4
[7]   Genetic tuning of fuzzy rule deep structures preserving interpretability and its interaction with fuzzy rule set reduction [J].
Casillas, J ;
Cordón, O ;
del Jesus, MJ ;
Herrera, F .
IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2005, 13 (01) :13-29
[8]  
Chi Z., 1996, FUZZY ALGORITHMS APP
[9]   The particle swarm - Explosion, stability, and convergence in a multidimensional complex space [J].
Clerc, M ;
Kennedy, J .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2002, 6 (01) :58-73
[10]   Ten years of genetic fuzzy systems:: current framework and new trends [J].
Cordón, O ;
Gomide, F ;
Herrera, F ;
Hoffmann, F ;
Magdalena, L .
FUZZY SETS AND SYSTEMS, 2004, 141 (01) :5-31