Computational study of the chemical reactivity of the Blue-M1 intermediate melanoidin

被引:31
作者
Frau, Juan [1 ]
Glossman-Mitnik, Daniel [1 ,2 ]
机构
[1] Univ Illes Balears, Dept Quim, Palma De Mallorca 07122, Spain
[2] Ctr Invest Mat Avanzados, Dept Medio Ambiente & Energia, Lab Virtual NANOCOSMOS, Miguel de Cervantes 120,Complejo Ind Chihuahua, Chihuahua 31136, Chih, Mexico
关键词
Melanoidins; Blue-M1; Conceptual DFT; Chemical reactivity; Dual descriptor; Parr function; Maximum absorption wavelength; MOLECULAR-FORCE FIELD; DENSITY-FUNCTIONAL THEORY; DUAL DESCRIPTOR; LOCAL REACTIVITY; BASIS-SETS; ELECTRON; EXCHANGE; DFT; EXCITATIONS; GEOMETRIES;
D O I
10.1016/j.comptc.2018.04.018
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
This study assessed eight density functionals that include CAM-B3LYP, LC-omega PBE, M11, MN12SX, N12SX, omega B97, omega B97X, and omega B97XD related to the Def2TZVP basis sets together with the SMD solvation model. These are assessed in calculating the molecular properties and structure of the Blue-M1 intermediate melanoidin pigment. Notably, the chemical reactivity descriptors for the system are calculated via the Conceptual Density Functional Theory. The choice of active sites applicable to nucleophilic, electrophilic as well as radical attacks is made by linking them with Fukui functions indices, electrophilic Parr functions, and condensed dual descriptor Delta f(r). The predicted maximum absorption wavelength tends to be considerably accurate relative to the experimental value. The study found the MN12SX and N12SX density functionals to be the most appropriate in predicting the chemical reactivity of the molecule under study.
引用
收藏
页码:22 / 29
页数:8
相关论文
共 80 条
[1]   Photosensitizer activity of model melanoldins [J].
Argirova, MD .
JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, 2005, 53 (04) :1210-1214
[2]   Understanding the Woodward-Hoffmann rules by using changes in electron density [J].
Ayers, Paul W. ;
Morell, Christophe ;
De Proft, Frank ;
Geerlings, Paul .
CHEMISTRY-A EUROPEAN JOURNAL, 2007, 13 (29) :8240-8247
[3]   The Kohn-Sham gap, the fundamental gap and the optical gap: the physical meaning of occupied and virtual Kohn-Sham orbital energies [J].
Baerends, E. J. ;
Gritsenko, O. V. ;
van Meer, R. .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2013, 15 (39) :16408-16425
[4]   Vertical excitation energies from the adiabatic connection [J].
Becke, Axel D. .
JOURNAL OF CHEMICAL PHYSICS, 2016, 145 (19)
[5]   Chemical Reactivity Descriptors for Ambiphilic Reagents: Dual Descriptor, Local Hypersoftness, and Electrostatic Potential [J].
Cardenas, Carlos ;
Rabi, Nataly ;
Ayers, Paul W. ;
Morell, Christophe ;
Jaramillo, Paula ;
Fuentealba, Patricio .
JOURNAL OF PHYSICAL CHEMISTRY A, 2009, 113 (30) :8660-8667
[6]   Long-range corrected hybrid density functionals with damped atom-atom dispersion corrections [J].
Chai, Jeng-Da ;
Head-Gordon, Martin .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2008, 10 (44) :6615-6620
[7]   Systematic optimization of long-range corrected hybrid density functionals [J].
Chai, Jeng-Da ;
Head-Gordon, Martin .
JOURNAL OF CHEMICAL PHYSICS, 2008, 128 (08)
[8]   On the nature of Parr functions to predict the most reactive sites along organic polar reactions [J].
Chamorro, Eduardo ;
Perez, Patricia ;
Domingo, Luis R. .
CHEMICAL PHYSICS LETTERS, 2013, 582 :141-143
[9]  
Chattaraj P.K., 2009, Chemical Reactivity Theory: A Density Functional View
[10]   Net Electrophilicity [J].
Chattaraj, Pratim Kumar ;
Chakraborty, Arindam ;
Giri, Santanab .
JOURNAL OF PHYSICAL CHEMISTRY A, 2009, 113 (37) :10068-10074