Crowdsensing IoT Architecture for Pervasive Air Quality and Exposome Monitoring: Design, Development, Calibration, and Long-Term Validation

被引:26
作者
De Vito, Saverio [1 ]
Esposito, Elena [1 ]
Massera, Ettore [1 ]
Formisano, Fabrizio [1 ]
Fattoruso, Grazia [1 ]
Ferlito, Sergio [1 ]
Del Giudice, Antonio [1 ]
D'Elia, Gerardo [1 ]
Salvato, Maria [1 ]
Polichetti, Tiziana [1 ]
D'Auria, Paolo [2 ]
Ionescu, Adrian M. [3 ]
Di Francia, Girolamo [1 ]
机构
[1] ENEA CR Portici, TERIN FSD Div, Ple E Fermi 1, I-80055 Portici, Italy
[2] ARPA Campania, Via Vicinale Santa Maria del Pianto Ctr Polifunz, I-80143 Naples, Italy
[3] EPFL Ecole Politech Fed Lausanne, NanoLab, CH-1015 Lausanne, Switzerland
基金
欧盟地平线“2020”;
关键词
IoT AQ nodes; sensor network; calibration; air quality monitoring; machine learning; POLLUTION; EXPOSURE;
D O I
10.3390/s21155219
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
A pervasive assessment of air quality in an urban or mobile scenario is paramount for personal or city-wide exposure reduction action design and implementation. The capability to deploy a high-resolution hybrid network of regulatory grade and low-cost fixed and mobile devices is a primary enabler for the development of such knowledge, both as a primary source of information and for validating high-resolution air quality predictive models. The capability of real-time and cumulative personal exposure monitoring is also considered a primary driver for exposome monitoring and future predictive medicine approaches. Leveraging on chemical sensing, machine learning, and Internet of Things (IoT) expertise, we developed an integrated architecture capable of meeting the demanding requirements of this challenging problem. A detailed account of the design, development, and validation procedures is reported here, along with the results of a two-year field validation effort.
引用
收藏
页数:28
相关论文
共 20 条
[1]  
[Anonymous], CAMPANIA REGIONAL EN
[2]  
[Anonymous], UIA MARSEILLE PROJEC
[3]   A novel soft sensor based warning system for hazardous ground-level ozone using advanced damped least squares neural network [J].
Balram, Deepak ;
Lian, Kuang-Yow ;
Sebastian, Neethu .
ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY, 2020, 205
[4]   Assessment of air quality microsensors versus reference methods: The EuNetAir Joint Exercise - Part II [J].
Borrego, C. ;
Ginja, J. ;
Coutinho, M. ;
Ribeiro, C. ;
Karatzas, K. ;
Sioumis, Th ;
Katsifarakis, N. ;
Konstantinidis, K. ;
De Vito, S. ;
Esposito, E. ;
Salvato, M. ;
Smith, P. ;
Andre, N. ;
Gerard, P. ;
Francis, L. A. ;
Castell, N. ;
Schneider, P. ;
Viana, M. ;
Minguillon, M. C. ;
Reimringer, W. ;
Otjes, R. P. ;
von Sicard, O. ;
Pohle, R. ;
Elen, B. ;
Suriano, D. ;
Pfister, V ;
Prato, M. ;
Dipinto, S. ;
Penza, M. .
ATMOSPHERIC ENVIRONMENT, 2018, 193 :127-142
[5]  
Castell N., PERSONALIZED ENV HLT
[6]   Can commercial low-cost sensor platforms contribute to air quality monitoring and exposure estimates? [J].
Castell, Nuria ;
Dauge, Franck R. ;
Schneider, Philipp ;
Vogt, Matthias ;
Lerner, Uri ;
Fishbain, Barak ;
Broday, David ;
Bartonova, Alena .
ENVIRONMENT INTERNATIONAL, 2017, 99 :293-302
[7]   Low-Cost Outdoor Air Quality Monitoring and Sensor Calibration: A Survey and Critical Analysis [J].
Concas, Francesco ;
Mineraud, Julien ;
Lagerspetz, Eemil ;
Varjonen, Samu ;
Liu, Xiaoli ;
Puolamaki, Kai ;
Nurmi, Petteri ;
Tarkoma, Sasu .
ACM TRANSACTIONS ON SENSOR NETWORKS, 2021, 17 (02)
[8]   On field calibration of an electronic nose for benzene estimation in an urban pollution monitoring scenario [J].
De Vito, S. ;
Massera, E. ;
Piga, A. ;
Martinotto, L. ;
Di Francia, G. .
SENSORS AND ACTUATORS B-CHEMICAL, 2008, 129 (02) :750-757
[9]   Adaptive machine learning strategies for network calibration of IoT smart air quality monitoring devices [J].
De Vito, Saverio ;
Di Francia, Girolamo ;
Esposito, Elena ;
Ferlito, Sergio ;
Formisano, Fabrizio ;
Massera, Ettore .
PATTERN RECOGNITION LETTERS, 2020, 136 :264-271
[10]   On the robustness of field calibration for smart air quality monitors [J].
De Vito, Saverio ;
Esposito, Elena ;
Castell, Nuria ;
Schneider, Philipp ;
Bartonova, A. .
SENSORS AND ACTUATORS B-CHEMICAL, 2020, 310