Fractional Laplacian system involving doubly critical nonlinearities in RN

被引:8
作者
Wang, Li [1 ]
Zhang, Binlin [2 ]
Zhang, Haijin [1 ]
机构
[1] East China Jiaotong Univ, Coll Sci, Nanchang 330013, Jiangxi, Peoples R China
[2] Heilongjiang Inst Technol, Dept Math, Harbin 150050, Heilongjiang, Peoples R China
基金
中国国家自然科学基金; 黑龙江省自然科学基金;
关键词
fractional Laplacian system; doubly critical nonlinearities; variational methods; ELLIPTIC-EQUATIONS; EXISTENCE; MULTIPLICITY; CONSTANTS;
D O I
10.14232/ejqtde.2017.1.57
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we are interested in a fractional Laplacian system in R-N, which involves critical Sobolev-type nonlinearities and critical Hardy-Sobolev-type nonlinearities. By using variational methods, we investigate the extremals of the corresponding best fractional Hardy-Sobolev constant and establish the existence of solutions. To our best knowledge, our main results are new in the study of the fractional Laplacian system.
引用
收藏
页码:1 / 17
页数:17
相关论文
共 34 条
[1]   Stationary Kirchhoff problems involving a fractional elliptic operator and a critical nonlinearity [J].
Autuori, Giuseppina ;
Fiscella, Alessio ;
Pucci, Patrizia .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2015, 125 :699-714
[2]  
Bisci GM, 2016, ENCYCLOP MATH APPL, V162
[3]   A Brezis-Nirenberg splitting approach for nonlocal fractional equations [J].
Bisci, Giovanni Molica ;
Servadei, Raffaella .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2015, 119 :341-353
[4]   POSITIVE SOLUTIONS OF NON-LINEAR ELLIPTIC-EQUATIONS INVOLVING CRITICAL SOBOLEV EXPONENTS [J].
BREZIS, H ;
NIRENBERG, L .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1983, 36 (04) :437-477
[5]  
Caffarelli, 2012, NONLINEAR PARTIAL DI, P37, DOI DOI 10.1007/978-3-642-25361-4_3
[6]   An extension problem related to the fractional Laplacian [J].
Caffarelli, Luis ;
Silvestre, Luis .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2007, 32 (7-9) :1245-1260
[7]   ASYMPTOTIC BEHAVIOUR OF A POROUS MEDIUM EQUATION WITH FRACTIONAL DIFFUSION [J].
Caffarelli, Luis A. ;
Luis Vazquez, Juan .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2011, 29 (04) :1393-1404
[8]   Existence theorems for entire solutions of stationary Kirchhoff fractional p-Laplacian equations [J].
Caponi, Maicol ;
Pucci, Patrizia .
ANNALI DI MATEMATICA PURA ED APPLICATA, 2016, 195 (06) :2099-2129
[9]   Classification of solutions for an integral equation [J].
Chen, WX ;
Li, CM ;
Ou, B .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2006, 59 (03) :330-343
[10]   Best constants for Sobolev inequalities for higher order fractional derivatives [J].
Cotsiolis, A ;
Tavoularis, NK .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2004, 295 (01) :225-236