Magnetically engineered spintronic sensors and memory

被引:519
作者
Parkin, S [1 ]
Jiang, X [1 ]
Kaiser, C [1 ]
Panchula, A [1 ]
Roche, K [1 ]
Samant, M [1 ]
机构
[1] IBM Corp, Almaden Res Ctr, San Jose, CA 95120 USA
关键词
field sensor; giant magnetoresistance (GMR); magnetic engineering magnetic random-access memory (MRAM); magnetic recording; magnetic tunneling junction (MTJ); magnetic tunneling; magnetoelectronics; magnetoresistance; oscillatory interlayer coupling; read head; spin-dependent transport; spin valve; spintronics;
D O I
10.1109/JPROC.2003.811807
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The discovery of enhanced magnetoresistance and oscillatory interlayer exchange coupling in transition metal multilayers just over a decade ago has enabled the development of new classes of magnetically engineered magnetic thin-film materials suitable for advanced magnetic sensors and magnetic random access memories. Magnetic sensors based on spin-valve giant magnetoresistive (GMR) sandwiches with artificial antiferromagnetic reference layers have resulted in enormous increases in the storage capacity of magnetic hard disk drives. The unique properties of magnetic tunnel junction (MTJ) devices has led to the development of an advanced high performance nonvolatile magnet random access memory: with density approaching that of dynamic random-access memory (RAM) and read-write speeds comparable to static RAM. Both GMR and MTJ devices are examples of spintronic materials in which the flow of spin-polarized electrons is manipulated by controlling, via magnetic fields, the orientation of magnetic moments in inhomogeneous magnetic thin film systems. More complex devices, including three-terminal hot electron magnetic tunnel transistors, suggest that there are many other applications of spintronic materials.
引用
收藏
页码:661 / 680
页数:20
相关论文
共 116 条
  • [21] Spin-dependent transmission of free electrons through ultrathin cobalt layers
    Drouhin, HJ
    vanderSluijs, AJ
    Lassailly, Y
    Lampel, G
    [J]. JOURNAL OF APPLIED PHYSICS, 1996, 79 (08) : 4734 - 4739
  • [22] Spin-dependent scattering in transition metals
    Drouhin, HJ
    [J]. JOURNAL OF APPLIED PHYSICS, 2001, 89 (11) : 6805 - 6807
  • [23] A RESISTOR NETWORK THEORY OF THE GIANT MAGNETORESISTANCE IN MAGNETIC SUPERLATTICES
    EDWARDS, DM
    MATHON, J
    MUNIZ, RB
    [J]. IEEE TRANSACTIONS ON MAGNETICS, 1991, 27 (04) : 3548 - 3552
  • [24] Optimizing the giant magnetoresistance of symmetric and bottom spin valves
    Egelhoff, WF
    Chen, PJ
    Powell, CJ
    Stiles, MD
    McMichael, RD
    Lin, CL
    Sivertsen, JM
    Judy, JH
    Takano, K
    Berkowitz, AE
    Anthony, TC
    Brug, JA
    [J]. JOURNAL OF APPLIED PHYSICS, 1996, 79 (08) : 5277 - 5281
  • [25] Feder R., 1985, Polarized Electrons in Surface Physics. Advanced Series in Surface Science
  • [26] Gallagher W. J., 1997, U. S. Patent, Patent No. [5,640,343, 5640343]
  • [27] Microstructured magnetic tunnel junctions
    Gallagher, WJ
    Parkin, SSP
    Lu, Y
    Bian, XP
    Marley, A
    Roche, KP
    Altman, RA
    Rishton, SA
    Jahnes, C
    Shaw, TM
    Xiao, G
    [J]. JOURNAL OF APPLIED PHYSICS, 1997, 81 (08) : 3741 - 3746
  • [28] Perpendicular giant magnetoresistance of magnetic multilayers
    Gijs, MAM
    Bauer, GEW
    [J]. ADVANCES IN PHYSICS, 1997, 46 (3-4) : 285 - 445
  • [29] High-magnetoresistance tunnel junctions using Co75Fe25 ferromagnetic electrodes
    Han, XF
    Daibou, T
    Kamijo, M
    Yaoita, K
    Kubota, H
    Ando, Y
    Miyazaki, T
    [J]. JAPANESE JOURNAL OF APPLIED PHYSICS PART 2-LETTERS, 2000, 39 (5B): : L439 - L441
  • [30] Heim D., 1995, U.S. patent, Patent No. [5,465,185, 5465185]