Estimation of an overall standardized mean difference in random-effects meta-analysis if the distribution of random effects departs from normal

被引:14
作者
Rubio-Aparicio, Maria [1 ]
Lopez-Lopez, Jose Antonio [2 ]
Sanchez-Meca, Julio [1 ]
Marin-Martinez, Fulgencio [1 ]
Viechtbauer, Wolfgang [3 ]
Van den Noortgate, Wim [4 ]
机构
[1] Univ Murcia, Dept Basic Psychol & Methodol, Murcia, Spain
[2] Univ Bristol, Sch Social & Community Med, Bristol, Avon, England
[3] Maastricht Univ, Dept Psychiat & Neuropsychol, Maastricht, Netherlands
[4] Univ Leuven, Fac Psychol & Educ Sci, Leuven, Belgium
关键词
confidence interval; meta-analysis; overall effect size; random-effects model; RANDOM-EFFECTS MODELS; EFFECTS META-REGRESSION; STATISTICAL-METHODS; LIKELIHOOD INFERENCE; CONFIDENCE-INTERVALS; VARIANCE ESTIMATORS; BOOTSTRAP METHODS; HETEROGENEITY; PERFORMANCE; MODERATORS;
D O I
10.1002/jrsm.1312
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
The random-effects model, applied in most meta-analyses nowadays, typically assumes normality of the distribution of the effect parameters. The purpose of this study was to examine the performance of various random-effects methods (standard method, Hartung's method, profile likelihood method, and bootstrapping) for computing an average effect size estimate and a confidence interval (CI) around it, when the normality assumption is not met. For comparison purposes, we also included the fixed-effect model. We manipulated a wide range of conditions, including conditions with some degree of departure from the normality assumption, using Monte Carlo simulation. To simulate realistic scenarios, we chose the manipulated conditions from a systematic review of meta-analyses on the effectiveness of psychological treatments. We compared the performance of the different methods in terms of bias and mean squared error of the average effect estimators, empirical coverage probability and width of the CIs, and variability of the standard errors. Our results suggest that random-effects methods are largely robust to departures from normality, with Hartung's profile likelihood methods yielding the best performance under suboptimal conditions.
引用
收藏
页码:489 / 503
页数:15
相关论文
共 49 条
  • [1] Adams DC, 1997, ECOLOGY, V78, P1277, DOI 10.2307/2265879
  • [2] [Anonymous], 2009, HDB RES SYNTHESIS ME
  • [3] Estimation of the predictive power of the model in mixed-effects meta-regression: A simulation study
    Antonio Lopez-Lopez, Jose
    Marin-Martinez, Fulgencio
    Sanchez-Meca, Julio
    Van den Noortgate, Wim
    Viechtbauer, Wolfgang
    [J]. BRITISH JOURNAL OF MATHEMATICAL & STATISTICAL PSYCHOLOGY, 2014, 67 (01) : 30 - 48
  • [4] A RANDOM-EFFECTS REGRESSION-MODEL FOR METAANALYSIS
    BERKEY, CS
    HOAGLIN, DC
    MOSTELLER, F
    COLDITZ, GA
    [J]. STATISTICS IN MEDICINE, 1995, 14 (04) : 395 - 411
  • [5] Borenstein M., 2009, Introd. Meta-Anal, P77, DOI [DOI 10.1002/9780470743386, 10.1002/9780470743386.ch13, 10.1002/9780470743386.ch6, DOI 10.1002/9780470743386.CH6]
  • [6] A basic introduction to fixed-effect and random-effects models for meta-analysis
    Borenstein, Michael
    Hedges, Larry V.
    Higgins, Julian P. T.
    Rothstein, Hannah R.
    [J]. RESEARCH SYNTHESIS METHODS, 2010, 1 (02) : 97 - 111
  • [7] A simple method for inference on an overall effect in meta-analysis
    Brockwell, Sarah E.
    Gordon, Ian R.
    [J]. STATISTICS IN MEDICINE, 2007, 26 (25) : 4531 - 4543
  • [8] A comparison of statistical methods for meta-analysis
    Brockwell, SE
    Gordon, IR
    [J]. STATISTICS IN MEDICINE, 2001, 20 (06) : 825 - 840
  • [9] Characteristics of meta-analyses and their component studies in the Cochrane Database of Systematic Reviews: a cross-sectional, descriptive analysis
    Davey, Jonathan
    Turner, Rebecca M.
    Clarke, Mike J.
    Higgins, Julian P. T.
    [J]. BMC MEDICAL RESEARCH METHODOLOGY, 2011, 11
  • [10] METAANALYSIS IN CLINICAL-TRIALS
    DERSIMONIAN, R
    LAIRD, N
    [J]. CONTROLLED CLINICAL TRIALS, 1986, 7 (03): : 177 - 188