Linguistic feature based learning model for fake news detection and classification

被引:100
|
作者
Choudhary, Anshika [1 ]
Arora, Anuja [1 ]
机构
[1] Jaypee Inst Informat Technol, Dept Comp Sci & Engn, Noida, India
关键词
Fake news; Syntactic; Readability; Neural network; Deep learning; Machine learning; LSTM;
D O I
10.1016/j.eswa.2020.114171
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Social media is used as a dominant source of news distribution among users. The world's preeminent decisions such as politics are acclaimed by social media to influence users for enclosing users' decisions in their favor. However, the adoption of social media is much needed for awareness but the authenticity of content is an unknown factor in the current scenario. Therefore, this research work finds it imperative to propose a solution to fake news detection and classification. In the case of fake news, content is the prime entity that captures the human mind towards trust for specific news. Therefore, a linguistic model is proposed to find out the properties of content that will generate language-driven features. This linguistic model extracts syntactic, grammatical, sentimental, and readability features of particular news. Language driven model requires an approach to handle time-consuming and handcrafted features problems in order to deal with the curse of dimensionality problem. Therefore, the neural-based sequential learning model is used to achieve superior results for fake news detection. The results are drawn to validate the importance of the linguistic model extracted features and finally combined linguistic feature-driven model is able to achieve the average accuracy of 86% for fake news detection and classification. The sequential neural model results are compared with machine learning based models and LSTM based word embedding based fake news detection model as well. Comparative results show that features based sequential model is able to achieve comparable evaluation performance in discernable less time.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Machine learning for fake news classification with optimal feature selection
    Fayaz, Muhammad
    Khan, Atif
    Bilal, Muhammad
    Khan, Sana Ullah
    SOFT COMPUTING, 2022, 26 (16) : 7763 - 7771
  • [2] Machine learning for fake news classification with optimal feature selection
    Muhammad Fayaz
    Atif Khan
    Muhammad Bilal
    Sana Ullah Khan
    Soft Computing, 2022, 26 : 7763 - 7771
  • [4] Context-Based Fake News Detection Model Relying on Deep Learning Models
    Amer, Eslam
    Kwak, Kyung-Sup
    El-Sappagh, Shaker
    ELECTRONICS, 2022, 11 (08)
  • [5] A Comprehensive Review on Fake News Detection With Deep Learning
    Mridha, M. F.
    Keya, Ashfia Jannat
    Hamid, Md. Abdul
    Monowar, Muhammad Mostafa
    Rahman, Md. Saifur
    IEEE ACCESS, 2021, 9 : 156151 - 156170
  • [6] Deep Dive into Fake News Detection: Feature-Centric Classification with Ensemble and Deep Learning Methods
    Alarfaj, Fawaz Khaled
    Khan, Jawad Abbas
    ALGORITHMS, 2023, 16 (11)
  • [7] Feature analysis of fake news: improving fake news detection in social media
    Leung, Johnathan
    Vatsalan, Dinusha
    Arachchilage, Nalin
    Journal of Cyber Security Technology, 2023, 7 (04) : 224 - 241
  • [8] A novel approach to fake news classification using LSTM-based deep learning models
    Padalko, Halyna
    Chomko, Vasyl
    Chumachenko, Dmytro
    FRONTIERS IN BIG DATA, 2024, 6
  • [9] Enhancing Fake News Detection by Multi-Feature Classification
    Almarashy, Ahmed Hashim Jawad
    Feizi-Derakhshi, Mohammad-Reza
    Salehpour, Pedram
    IEEE ACCESS, 2023, 11 : 139601 - 139613
  • [10] An empiric validation of linguistic features in machine learning models for fake news detection
    Puraivan, Eduardo
    Venegas, Rene
    Riquelme, Fabian
    DATA & KNOWLEDGE ENGINEERING, 2023, 147