On von Neumann regular rings with weak comparability

被引:5
作者
Kutami, M [1 ]
机构
[1] Yamaguchi Univ, Fac Sci, Dept Math, Yamaguchi 7538512, Japan
关键词
von Neumann regular rings; weak comparability; direct finiteness; strict unperforation;
D O I
10.1016/S0021-8693(03)00258-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In 1991, K.C. O'Meara first defined the notion of weak comparability for regular rings, and he showed that every simple directly finite regular ring with weak comparability is unit-regular. In this paper, we investigate properties for regular rings with weak comparability, and we show that the strict cancellation property and the strict unperforation property hold for the family of directly finite finitely generated projective modules over these rings. (C) 2003 Elsevier Science (USA). All rights reserved.
引用
收藏
页码:285 / 298
页数:14
相关论文
共 34 条
  • [21] Left SF-rings and regular rings
    Zhou, Haiyan
    COMMUNICATIONS IN ALGEBRA, 2007, 35 (12) : 3842 - 3850
  • [22] On Left SF-Rings and Strongly Regular Rings
    Subedi, Tikaram
    Buhphang, Ardeline Mary
    KYUNGPOOK MATHEMATICAL JOURNAL, 2016, 56 (03): : 861 - 866
  • [23] ON WEAKLY REGULAR RINGS AND GENERALIZATIONS OF V-RINGS
    Subedi, Tikaram
    Buhphang, A. M.
    INTERNATIONAL ELECTRONIC JOURNAL OF ALGEBRA, 2011, 10 : 162 - 173
  • [24] ON STRONGLY REGULAR RINGS AND GENERALIZATIONS OF V-RINGS
    Subedi, Tikaram
    Buhphang, Ardeline Mary
    INTERNATIONAL ELECTRONIC JOURNAL OF ALGEBRA, 2013, 14 : 10 - 18
  • [25] On Regular Ideals in Reduced Rings
    Aliabad, A. R.
    Mohamadian, R.
    Nazari, S.
    FILOMAT, 2017, 31 (12) : 3715 - 3726
  • [26] A construction of unit-regular rings which satisfy (DF)
    Kutami, M
    COMMUNICATIONS IN ALGEBRA, 2004, 32 (04) : 1509 - 1517
  • [27] Rings without identity which are morita equivalent to regular rings
    Ara, P
    ALGEBRA COLLOQUIUM, 2004, 11 (04) : 533 - 540
  • [28] Comprehensive Grobner bases and regular rings
    Weispfenning, V
    JOURNAL OF SYMBOLIC COMPUTATION, 2006, 41 (3-4) : 285 - 296
  • [29] Direct finiteness of representable regular -rings
    Herrmann, Christian
    ALGEBRA UNIVERSALIS, 2019, 80 (01)
  • [30] Uniform diagonalisation of matrices over regular rings
    O'Meara, KC
    Raphael, RM
    ALGEBRA UNIVERSALIS, 2001, 45 (04) : 383 - 405