Spaces with measured walls, the Haagerup property and property (T)

被引:33
作者
Cherix, PA
Martin, F
Valette, A
机构
[1] Univ Geneva, Sect Math, CH-1211 Geneva 24, Switzerland
[2] Univ Neuchatel, Inst Math, CH-2007 Neuchatel, Switzerland
关键词
D O I
10.1017/S0143385704000185
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce the notion of a space with measured walls, generalizing the concept of a space with walls due to Haglund and Paulin (Simplicite de groupes d'automorphismes d'espaces courbure negative. Geom. Topol. Monograph 1 (1998), 181-248). We observe that if a locally compact group G acts properly on a space with measured walls, then G has the Haagerup property. We conjecture that the converse holds and we prove this conjecture for the following classes of groups: discrete groups with the Haagerup property, closed subgroups of SO(n, 1), groups acting properly on real trees, SL2(K) where K is a global field and amenable groups.
引用
收藏
页码:1895 / 1908
页数:14
相关论文
共 21 条
[1]  
[Anonymous], 1998, J LIE THEORY
[2]  
[Anonymous], DIMACS SER DISCRETE
[3]  
BEKKA MEB, 1995, LONDON MATH SOC LECT, V227
[4]  
CHATTERJI I, 2003, WALL SPACES CAT CUBE
[5]  
Cherix PA, 2001, PROG MATH, V197, P41
[6]   ABSTRACT LENGTH FUNCTIONS IN GROUPS [J].
CHISWELL, IM .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1976, 80 (NOV) :451-463
[7]  
Ghys E., 2001, Enseign. Math. 2, V47, P329
[8]  
Halmos Paul R., 1950, Measure Theory, DOI DOI 10.1007/978-1-4684-9440-2
[9]  
Kelly J. B., 1970, INEQUALITIES, P193
[10]  
NEUHAUSER M, 2003, RELATIVE PROPERTY T