Interval Type-2 Takagi-Sugeno-Kang Fuzzy Logic Approach for Three-Tank System Modeling

被引:0
|
作者
Maalej, Imen [1 ]
Rekik, Chokri [1 ]
Ben Halima Abid, Donia [1 ]
Derbel, Nabil [1 ]
机构
[1] Univ Sfax, Sfax Engn Sch, Control & Energy Management Lab, Sfax 3038, Tunisia
来源
2014 IEEE 23RD INTERNATIONAL SYMPOSIUM ON INDUSTRIAL ELECTRONICS (ISIE) | 2014年
关键词
Fuzzy rules; type-2 fuzzy sets; IT2 TSK FLSs; T1 TSK FLSs; modeling; DESIGN; IDENTIFICATION; CONTROLLER; SETS;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper concerns the use of fuzzy structures to model non linear dynamic systems. An interval type-2 Takagi Sugeno Kang fuzzy logic systems (IT2 TSK FLSs) is proposed. The proposed approach is a combination of IT2 fuzzy system and TSK fuzzy models and it presents an extension of the type-1 Takagi Sugeno Kang fuzzy logic system (T1 TSK FLSs). The interval type-2 fuzzy sets provide additional degrees of freedom and offer the capability to directly handle uncertainties. Different steps of this approach are described. The performance of the IT2 TSK FLSs is compared to the traditional T1 TSK FLSs. Simulation results performed on three tank system illustrate the efficiency of the suggested method.
引用
收藏
页码:144 / 149
页数:6
相关论文
共 50 条
  • [1] A Novel Hammerstein Model for Nonlinear Networked Systems Based on an Interval Type-2 Fuzzy Takagi-Sugeno-Kang System
    Khalifa, Tarek R.
    El-Nagar, Ahmad M.
    El-Brawany, Mohamed A.
    El-Araby, Essam A. G.
    El-Bardini, Mohammad
    IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2021, 29 (02) : 275 - 285
  • [2] DESIGN OF TAKAGI-SUGENO-KANG TYPE INTERVAL TYPE-2 FUZZY LOGIC SYSTEMS BASED ON ENHANCED OPPOSITE DIRECTION SEARCHING ALGORITHMS
    Chen, Yang
    INTERNATIONAL JOURNAL OF INNOVATIVE COMPUTING INFORMATION AND CONTROL, 2020, 16 (06): : 2091 - 2101
  • [3] Hybrid learning mechanism for interval A2-C1 type-2 non-singleton type-2 Takagi-Sugeno-Kang fuzzy logic systems
    Mendez, Gerardo M.
    de los Angeles Hernandez, Maria
    INFORMATION SCIENCES, 2013, 220 : 149 - 169
  • [4] Design of Takagi Sugeno Kang Type Interval Type-2 Fuzzy Logic Systems Optimized with Hybrid Algorithms
    Chen, Yang
    Yang, Jiaxiu
    Li, Chenxi
    INTERNATIONAL JOURNAL OF FUZZY SYSTEMS, 2023, 25 (02) : 868 - 879
  • [5] Data-driven fuzzy modeling for Takagi-Sugeno-Kang fuzzy system
    Rezaee, Babak
    Zarandi, M. H. Fazel
    INFORMATION SCIENCES, 2010, 180 (02) : 241 - 255
  • [6] Stabilization of Type-2 Fuzzy Takagi-Sugeno-Kang Identifier Using Lyapunov Functions
    Kayacan, Erdal
    Khanesar, Mojtaba Ahmadieh
    Kayacan, Erkan
    2015 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE 2015), 2015,
  • [7] Takagi-Sugeno-Kang Type Collaborative Fuzzy Rule Based System
    Chou, K. P.
    Prasad, M.
    Lin, Y. Y.
    Joshi, S.
    Lin, C. T.
    Chang, J. Y.
    2014 IEEE SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE AND DATA MINING (CIDM), 2014, : 315 - 320
  • [8] ICT2TSK: An Improved Clustering Algorithm for WSN Using a Type-2 Takagi-Sugeno-Kang Fuzzy Logic System
    Zhang, Feng
    Zhang, Qi-Ye
    Sun, Ze-Ming
    2013 IEEE SYMPOSIUM ON WIRELESS TECHNOLOGY & APPLICATIONS (ISWTA2013), 2013, : 153 - 158
  • [9] Desulfurization process using Takagi-Sugeno-Kang fuzzy modeling
    Rezaee, Babak
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2010, 46 (1-4): : 191 - 197
  • [10] Takagi-Sugeno-Kang Type Fuzzy Models with Fuzzy Equations in the Consequence Part
    Walaszek-Babiszewska, Anna
    2010 15TH INTERNATIONAL CONFERENCE ON METHODS AND MODELS IN AUTOMATION AND ROBOTICS (MMAR), 2010, : 86 - 90