PRESENTABLE SIGNATURES AND INITIAL SEMANTICS

被引:1
作者
Ahrens, Benedikt [1 ]
Hirschowitz, Andre [2 ]
Lafont, Ambroise [3 ]
Maggesi, Marco [4 ]
机构
[1] Univ Birmingham, Birmingham, W Midlands, England
[2] Univ Cote dAzur, LJAD, CNRS, Nice, France
[3] Univ New South Wales, Sydney, NSW, Australia
[4] Univ Firenze, Florence, Italy
基金
英国工程与自然科学研究理事会;
关键词
initial semantics; signature; syntax; monadic substitution; computer-checked proof; SYNTAX; MODULES; MONADS;
D O I
10.23638/LMCS-17(2:17)2021
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We present a device for specifying and reasoning about syntax for datatypes, programming languages, and logic calculi. More precisely, we study a notion of "signature" for specifying syntactic constructions. In the spirit of Initial Semantics, we define the "syntax generated by a signature" to be the initial object-if it exists-in a suitable category of models. In our framework, the existence of an associated syntax to a signature is not automatically guaranteed. We identify, via the notion of presentation of a signature, a large class of signatures that do generate a syntax. Our (presentable) signatures subsume classical algebraic signatures (i.e., signatures for languages with variable binding, such as the pure lambda calculus) and extend them to include several other significant examples of syntactic constructions. One key feature of our notions of signature, syntax, and presentation is that they are highly compositional, in the sense that complex examples can be obtained by gluing simpler ones. Moreover, through the Initial Semantics approach, our framework provides, beyond the desired algebra of terms, a well-behaved substitution and the induction and recursion principles associated to the syntax. This paper builds upon ideas from a previous attempt by Hirschowitz-Maggesi, which, in turn, was directly inspired by some earlier work of Ghani-Uustalu-Hamana and Matthes-Uust alu. The main results presented in the paper are computer-checked within the UniMath system.
引用
收藏
页码:17:1 / 17:28
页数:28
相关论文
共 39 条
[21]  
Ghani N., 2006, Higher-Order and Symbolic Computation, V19, P263, DOI 10.1007/s10990-006-8748-4
[22]   LINEAR LOGIC [J].
GIRARD, JY .
THEORETICAL COMPUTER SCIENCE, 1987, 50 (01) :1-102
[23]  
GOGUEN JA, 1978, CURRENT TRENDS PROGR, V4, P80
[25]   Modules over monads and linearity [J].
Hirschowitz, Andre ;
Maggesi, Marco .
LOGIC, LANGUAGE, INFORMATION AND COMPUTATION, PROCEEDINGS, 2007, 4576 :218-+
[26]   Initial Semantics for Strengthened Signatures [J].
Hirschowitz, Andre ;
Maggesi, Marco .
ELECTRONIC PROCEEDINGS IN THEORETICAL COMPUTER SCIENCE, 2012, (77) :31-38
[27]   Modules over monads and initial semantics [J].
Hirschowitz, Andre ;
Maggesi, Marco .
INFORMATION AND COMPUTATION, 2010, 208 (05) :545-564
[28]  
Hirschowitz Andre, 2020, PACMPL, V4
[29]   CARTESIAN CLOSED 2-CATEGORIES AND PERMUTATION EQUIVALENCE IN HIGHER-ORDER REWRITING [J].
Hirschowitz, Tom .
LOGICAL METHODS IN COMPUTER SCIENCE, 2013, 9 (03)
[30]   The Category Theoretic Understanding of Universal Algebra: Lawvere Theories and Monads [J].
Hyland, Martin ;
Power, John .
ELECTRONIC NOTES IN THEORETICAL COMPUTER SCIENCE, 2007, 172 :437-458