MASS TRANSPORTATION ON SUB-RIEMANNIAN MANIFOLDS

被引:55
作者
Figalli, Alessio [1 ]
Rifford, Ludovic [2 ]
机构
[1] Univ Texas Austin, Dept Math, Austin, TX 78712 USA
[2] Univ Nice Sophia Antipolis, Lab JA Dieudonne, UMR 6621, F-06108 Nice 02, France
关键词
Optimal transport; sub-Riemannian geometry; POLAR FACTORIZATION;
D O I
10.1007/s00039-010-0053-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the optimal transport problem in sub-Riemannian manifolds where the cost function is given by the square of the sub-Riemannian distance. Under appropriate assumptions, we generalize Brenier-McCann's theorem proving existence and uniqueness of the optimal transport map. We show the absolute continuity property of Wassertein geodesics, and we address the regularity issue of the optimal map. In particular, we are able to show its approximate differentiability a. e. in the Heisenberg group (and under some weak assumptions on the measures the differentiability a. e.), which allows us to write a weak form of the Monge-Amp` ere equation.
引用
收藏
页码:124 / 159
页数:36
相关论文
共 38 条
[1]  
AGRACHEV A., 1999, ESAIM Control Optim. Calc. Var., V4, P377
[2]  
AGRACHEV A., 2001, Rend. Sem. Mat. Univ. e Politec. Torino, V56, P1
[3]  
Agrachev A. A., 2004, Control Theory and Optimization, V87
[4]  
Agrachev A. A., 2009, RUSSIAN MATH DOKL, V79, P1
[5]   OPTIMAL TRANSPORTATION UNDER NONHOLONOMIC CONSTRAINTS [J].
Agrachev, Andrei ;
Lee, Paul .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2009, 361 (11) :6019-6047
[6]  
Alberti G, 1999, MATH Z, V230, P259, DOI 10.1007/PL00004691
[7]   Optimal mass transportation in the Heisenberg group [J].
Ambrosio, L ;
Rigot, S .
JOURNAL OF FUNCTIONAL ANALYSIS, 2004, 208 (02) :261-301
[8]  
Ambrosio L., 2005, LECT MATH
[9]  
[Anonymous], 2002, AM MATH SOC, DOI DOI 10.1090/SURV/091
[10]  
[Anonymous], 1996, Progress in Mathematics