Reducible gauge algebra of BRST-invariant constraints

被引:2
作者
Batalin, I. A.
Bering, K.
机构
[1] Masaryk Univ, Inst Theoret Phys & Astrophys, CZ-61137 Brno, Czech Republic
[2] Russian Acad Sci, PN Lebedev Phys Inst, IE Tamm Theory Div, Moscow 119991, Russia
基金
俄罗斯基础研究基金会;
关键词
BFV-BRST quantization; extended BRST symmetry; reducible gauge algebra; antibracket;
D O I
10.1016/j.nuclphysb.2007.02.013
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We show that it is possible to formulate the most general first-class gauge algebra of the operator formalism by only using BRST-invariant constraints. In particular, we extend a previous construction for irreducible gauge algebras to the reducible case. The gauge algebra induces two nilpotent, Grassmann-odd, mutually anti-commuting BRST operators that bear structural similarities with BRST/anti-BRST theories but with shifted ghost number assignments. In both cases we show how the extended BRST algebra can be encoded into an operator master equation. A unitarizing Hamiltonian that respects the two BRST symmetries is constructed with the help of a gauge-fixing boson. Abelian reducible theories are shown explicitly in full detail, while non-Abelian theories are worked out for the lowest reducibility stages and ghost momentum ranks. (C) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:190 / 233
页数:44
相关论文
共 37 条
[1]  
[Anonymous], 1975, LEBEDEV 75 39
[2]   On the transformations of Hamiltonian gauge algebra under rotations of constraints [J].
Batalin, I ;
Tyutin, I .
INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2005, 20 (04) :895-905
[3]   Open groups of constraints. Integrating arbitrary involutions [J].
Batalin, I ;
Marnelius, R .
PHYSICS LETTERS B, 1998, 441 (1-4) :243-249
[4]   Quantum antibrackets [J].
Batalin, I ;
Marnelius, R .
PHYSICS LETTERS B, 1998, 434 (3-4) :312-320
[5]   Dualities between Poisson brackets and antibrackets [J].
Batalin, I ;
Marnelius, R .
INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1999, 14 (32) :5049-5073
[6]  
BATALIN IA, 1988, ANN I H POINCARE-PHY, V49, P145
[7]   OPERATOR QUANTIZATION AND ABELIZATION OF DYNAMIC-SYSTEMS SUBJECT TO 1ST-CLASS CONSTRAINTS [J].
BATALIN, IA ;
FRADKIN, ES .
RIVISTA DEL NUOVO CIMENTO, 1986, 9 (10) :1-48
[8]   BRST-invariant algebra of constraints in terms of commutators and quantum antibrackets [J].
Batalin, IA ;
Tyutin, IV .
THEORETICAL AND MATHEMATICAL PHYSICS, 2004, 138 (01) :1-17
[9]   EXTENDED BRST QUANTIZATION OF GAUGE-THEORIES IN THE GENERALIZED CANONICAL FORMALISM [J].
BATALIN, IA ;
LAVROV, PM ;
TYUTIN, IV .
JOURNAL OF MATHEMATICAL PHYSICS, 1990, 31 (01) :6-13
[10]   AN SP(2)-COVARIANT VERSION OF GENERALIZED CANONICAL QUANTIZATION OF DYNAMIC-SYSTEMS WITH LINEARLY DEPENDENT CONSTRAINTS [J].
BATALIN, IA ;
LAVROV, PM ;
TYUTIN, IV .
JOURNAL OF MATHEMATICAL PHYSICS, 1990, 31 (11) :2708-2717