ESTIMATIONS OF HEAT CAPACITIES FOR ACTINIDE DIOXIDE: UO2, NpO2, ThO2, AND PuO2

被引:10
|
作者
Eser, E. [1 ]
Koc, H. [2 ]
Gokbulut, M. [3 ]
Gursoy, G. [4 ]
机构
[1] Gazi Univ, Polath Fac Arts & Sci, Dept Phys, Ankara, Turkey
[2] Mus Alparslan Univ, Vocat Sch, Dept Elect & Energy, Mus, Turkey
[3] Gaziosmanpasa Univ, Fac Arts & Sci, Dept Phys, Tokat, Turkey
[4] Ahi Evran Univ, Vocat Sch Hlth Serv, Dept Med Serv & Tech, Kirsehir, Turkey
关键词
Nuclear Fuels; Minor Actinide; Temperature Dependence; Uranium Dioxide; Debye Functions; RAY DEBYE TEMPERATURE; THERMAL-EXPANSION; THERMOPHYSICAL PROPERTIES; MOLECULAR-DYNAMICS; THERMODYNAMIC PROPERTIES; GRUNEISEN CONSTANT; THORIUM-DIOXIDE; TRANSMUTATION; CONDUCTIVITY; INTEGER;
D O I
10.5516/NET.07.2014.024
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
The evaluation of thermal properties of actinide oxide fuels is a problem of high importance for the development of new generation reactors. In the present study, an expression obtained for n-dimensional Debye functions is used to derive a simple analytical expression for the specific heat capacity of nuclear fuels. To test the validity and reliability of this expression, the analytical expression is applied to UO2, NpO2, ThO2, and PuO2. It is seen that the formula was in agreement with the experimental and theoretical results reported in the literature.
引用
收藏
页码:863 / 868
页数:6
相关论文
共 50 条
  • [21] Calculation of heat capacity of the nuclear fuels UO2 and NpO2 using integer and non-integer n-dimensional Debye functions
    Koc, H.
    Eser, E.
    Mamedov, B. A.
    NUCLEAR ENGINEERING AND DESIGN, 2011, 241 (09) : 3678 - 3682
  • [22] The estimation of the heat capacity of NpO2
    Serizawa, H
    Arai, Y
    Nakajima, K
    JOURNAL OF CHEMICAL THERMODYNAMICS, 2001, 33 (06) : 615 - 628
  • [23] A new heat capacity law for UO2, PuO2 and (U,Pu)O2 derived from molecular dynamics simulations and useable in fuel performance codes
    Bathellier, Didier
    Lainet, Marc
    Freyss, Michel
    Olsson, Par
    Bourasseau, Emeric
    JOURNAL OF NUCLEAR MATERIALS, 2021, 549
  • [24] Theoretical studies of UO2(OH)(H2O)n+, UO2(OH)2(H2O)n, NpO2(OH)(H2O)n, and PuO2(OH)(H2O)n+ (n≤21) complexes in aqueous solution
    Cao, Zhiji
    Balasubramanian, K.
    JOURNAL OF CHEMICAL PHYSICS, 2009, 131 (16)
  • [25] Effects of irradiation temperature on the response of CeO2, ThO2, and UO2 to highly ionizing radiation
    Cureton, William E.
    Palomares, Raul, I
    Tracy, Cameron L.
    O'Quinn, Eric C.
    Walters, Jeffrey
    Zdorovets, Maxim
    Ewing, Rodney C.
    Toulemonde, Marcel
    Lang, Maik
    JOURNAL OF NUCLEAR MATERIALS, 2019, 525 : 83 - 91
  • [26] Atomistic models to investigate thorium dioxide (ThO2)
    Behera, Rakesh K.
    Deo, Chaitanya S.
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2012, 24 (21)
  • [27] The high temperature heat capacity of NpO2
    Benes, O.
    Gotcu-Freis, P.
    Schwoerer, F.
    Konings, R. J. M.
    Fanghaenel, Th.
    JOURNAL OF CHEMICAL THERMODYNAMICS, 2011, 43 (05) : 651 - 655
  • [28] Primary radiation damage on displacement cascades in UO2, ThO2 and (U0.5Th0.5)O2
    Rahman, M. J.
    Cooper, M. W. D.
    Szpunar, B.
    Szpunar, J. A.
    COMPUTATIONAL MATERIALS SCIENCE, 2018, 154 : 508 - 516
  • [29] The Heat Capacity of PuO2 at High Temperature: Molecular Dynamics Calculations
    Calabrese, Rolando
    JOURNAL OF NUCLEAR ENGINEERING AND RADIATION SCIENCE, 2022, 8 (04):
  • [30] A computational study on the superionic behaviour of ThO2
    Ghosh, P. S.
    Arya, A.
    Dey, G. K.
    Kuganathan, N.
    Grimes, R. W.
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2016, 18 (46) : 31494 - 31504