Seeded free-electron and inverse free-electron laser techniques for radiation amplification and electron microbunching in the terahertz range

被引:31
作者
Sung, C. [1 ]
Tochitsky, S. Ya.
Reiche, S.
Rosenzweig, J. B.
Pellegrini, C.
Joshi, C.
机构
[1] Univ Calif Los Angeles, Dept Elect Engn, Neptune Lab, Los Angeles, CA 90095 USA
[2] Univ Calif Los Angeles, Dept Phys, Neptune Lab, Los Angeles, CA 90095 USA
关键词
D O I
10.1103/PhysRevSTAB.9.120703
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
A comprehensive analysis is presented that describes amplification of a seed THz pulse in a single-pass free-electron laser (FEL) driven by a photoinjector. The dynamics of the radiation pulse and the modulated electron beam are modeled using the time-dependent FEL code, GENESIS 1.3. A 10-ps (FWHM) electron beam with a peak current of 50 - 100 A allows amplification of a similar to 1 kW seed pulse in the frequency range 0.5 - 3 THz up to 10 - 100 MW power in a relatively compact 2-m long planar undulator. The electron beam driving the FEL is strongly modulated, with some inhomogeneity due to the slippage effect. It is shown that THz microbunching of the electron beam is homogeneous over the entire electron pulse when saturated FEL amplification is utilized at the very entrance of an undulator. This requires seeding of a 30-cm long undulator buncher with a 1 - 3 MW of pump power with radiation at the resonant frequency. A narrow-band seed pulse in the THz range needed for these experiments can be generated by frequency mixing of CO2 laser lines in a GaAs nonlinear crystal. Two schemes for producing MW power pulses in seeded FELs are considered in some detail for the beam parameters achievable at the Neptune Laboratory at UCLA: the first uses a waveguide to transport radiation in the 0.5 - 3 THz range through a 2- m long FEL amplifier and the second employs high-gain third harmonic generation using the FEL process at 3 - 9 THz.
引用
收藏
页数:9
相关论文
共 19 条
[1]  
Anderson SG, 2001, AIP CONF PROC, V569, P487, DOI 10.1063/1.1384378
[2]   FABRY-PEROT INTERFEROMETERS FOR USE AT SUBMILLIMETER WAVELENGTHS [J].
BAKER, EAM ;
WALKER, B .
JOURNAL OF PHYSICS E-SCIENTIFIC INSTRUMENTS, 1982, 15 (01) :25-32
[3]   HIGH-ENERGY INVERSE FREE-ELECTRON-LASER ACCELERATOR [J].
COURANT, ED ;
PELLEGRINI, C ;
ZAKOWICZ, W .
PHYSICAL REVIEW A, 1985, 32 (05) :2813-2823
[4]  
England RJ, 2004, AIP CONF PROC, V737, P414, DOI 10.1063/1.1842572
[5]  
HALBACH K, 1998, HDB ACCELERATOR PHYS
[6]   FAR INFRARED MEASUREMENT OF DIELECTRIC PROPERTIES OF GAAS AND CDTE AT 300-K AND 8-K [J].
JOHNSON, CJ ;
SHERMAN, GH ;
WEIL, R .
APPLIED OPTICS, 1969, 8 (08) :1667-+
[7]   Demonstration of high-trapping efficiency and narrow energy spread in a laser-driven accelerator [J].
Kimura, WD ;
Babzien, M ;
Ben-Zvi, I ;
Campbell, LP ;
Cline, DB ;
Dilley, CE ;
Gallardo, JC ;
Gottschalk, SC ;
Kusche, KP ;
Pantell, RH ;
Pogorelsky, IV ;
Quimby, DC ;
Skaritka, J ;
Steinhauer, LC ;
Yakimenko, V ;
Zhou, F .
PHYSICAL REVIEW LETTERS, 2004, 92 (05) :4
[8]   Generation and complete electric-field characterization of intense ultrashort tunable far-infrared laser pulses [J].
Knippels, GMH ;
Yan, X ;
MacLeod, AM ;
Gillespie, WA ;
Yasumoto, M ;
Oepts, D ;
van der Meer, AFG .
PHYSICAL REVIEW LETTERS, 1999, 83 (08) :1578-1581
[9]  
MUSUMECI P, 2002, P INT C LASER2001, P41
[10]   GENESIS 1.3: a fully 3D time-dependent FEL simulation code [J].
Reicher, S .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 1999, 429 (1-3) :243-248