Carbon cycling and bacterial carbon sources in pristine and impacted Mediterranean seagrass sediments

被引:112
作者
Holmer, M
Duarte, CM
Boschker, HTS
Barrón, C
机构
[1] Univ So Denmark, Inst Biol, DK-5230 Odense M, Denmark
[2] CSIC, IMEDEA, Grp Oceanog Interdisciplinar, Inst Mediterraneo Estudios Avanzados,UiB, Esporles 07190, Islas Balearas, Spain
[3] Netherlands Inst Ecol, NIOO, KNAW, NL-4400 AC Yerseke, Netherlands
关键词
seagrass; sediments; carbon cycling; delta C-13; bacterial substrates; sulfate reduction;
D O I
10.3354/ame036227
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
Stable carbon-isotope ratios of bacterial biomarkers were studied in Mediterranean seagrass meadows and macroalgae communities to identify the sources of organic carbon used by the sediment bacteria. Bacteria delta(13)C ratios in pristine sediments vegetated by the seagrass Posidonia oceanica were either similar to the seagrass signal or slightly enriched, suggesting that seagrass detritus was of major importance as a bacterial carbon source. There was a shift in bacterial carbon sources in anthropogenic impacted P. oceanica meadows towards seston and macroalgae. The net primary productivity was reduced in these meadows, whereas the rates of mineralization as measured by sulfate reduction rates were enhanced in the sediments. This effect on mineralization was probably due to the input of less refractory organic matter compared to seagrass detritus, which enhances the bacterial decomposition of organic matter. In the fast growing seagrass Cymodocea nodosa meadow, the bacterial carbon sources consisted of a mixture of seagrass detritus and seston, and the mineralization rates were much higher compared to the P. oceanica meadows, indicating that these carbon sources were more labile and easily decomposed by the bacteria. A similar pattern was found in the macroalgae bed with Caulerpa prolifera, where the rates of mineralization were high, similar to findings in organic impacted fish farm sediments. Here C. prolifera detritus was the most important carbon source and accounted for an increase in sediment organic content. The possible impacts of a shift in bacterial carbon sources due to nutrient loading are discussed in relation to the performance of P. oceanica in carbonate sediments.
引用
收藏
页码:227 / 237
页数:11
相关论文
共 60 条
[1]   Evidence of direct particle trapping by a tropical seagrass meadow [J].
Agawin, NSR ;
Duarte, GM .
ESTUARIES, 2002, 25 (6A) :1205-1209
[2]   Annual metabolic carbon balance of the seagrass Posidonia oceanica:: the importance of carbohydrate reserves [J].
Alcoverro, T ;
Manzanera, M ;
Romero, J .
MARINE ECOLOGY PROGRESS SERIES, 2001, 211 :105-116
[3]   BIOLOGICAL FIXATION OF ATMOSPHERIC NITROGEN IN THE MEDITERRANEAN-SEA [J].
BETHOUX, JP ;
COPINMONTEGUT, G .
LIMNOLOGY AND OCEANOGRAPHY, 1986, 31 (06) :1353-1358
[4]   Sulphate reduction associated with roots and rhizomes of the marine macrophyte Zostera marina [J].
Blaabjerg, V ;
Finster, K .
AQUATIC MICROBIAL ECOLOGY, 1998, 15 (03) :311-314
[5]  
BLOMQVIST S, 1981, ARCH HYDROBIOL, V91, P101
[6]   The contribution of macrophyte-derived organic matter to microbial biomass in salt-marsh sediments: Stable carbon isotope analysis of microbial biomarkers [J].
Boschker, HTS ;
de Brouwer, JFC ;
Cappenberg, TE .
LIMNOLOGY AND OCEANOGRAPHY, 1999, 44 (02) :309-319
[7]   Direct linking of microbial populations to specific biogeochemical processes by 13C-labelling of biomarkers [J].
Boschker, HTS ;
Nold, SC ;
Wellsbury, P ;
Bos, D ;
de Graaf, W ;
Pel, R ;
Parkes, RJ ;
Cappenberg, TE .
NATURE, 1998, 392 (6678) :801-805
[8]   Stable isotopes and biomarkers in microbial ecology [J].
Boschker, HTS ;
Middelburg, JJ .
FEMS MICROBIOLOGY ECOLOGY, 2002, 40 (02) :85-95
[9]   Limited coupling of macrophyte production and bacterial carbon cycling in the sediments of Zostera spp. meadows [J].
Boschker, HTS ;
Wielemaker, A ;
Schaub, BEM ;
Holmer, M .
MARINE ECOLOGY PROGRESS SERIES, 2000, 203 :181-189
[10]   A SALICYLATE-HYPOCHLORITE METHOD FOR DETERMINING AMMONIA IN SEAWATER [J].
BOWER, CE ;
HOLMHANSEN, T .
CANADIAN JOURNAL OF FISHERIES AND AQUATIC SCIENCES, 1980, 37 (05) :794-798