Nonlinear stability of oscillatory pulses in the parametric nonlinear Schrodinger equation

被引:2
作者
Chang, Paul A. C. [1 ]
Promislow, Keith
机构
[1] Univ British Columbia, Dept Math, Vancouver, BC V6T 1Z2, Canada
[2] Michigan State Univ, Dept Math, E Lansing, MI 48864 USA
关键词
D O I
10.1088/0951-7715/20/3/009
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We extend the renormalization group method, developed for the study of pulse interaction in damped wave equations, to the study of oscillatory motion of supercritical pulses in the parametrically forced nonlinear Schrodinger equation (PNLS). We construct a global manifold which asymptotically attracts the flow into an O( r(4)) neighbourhood in the H-1 norm, where r is the amplitude of the internal oscillations. The oscillatory and translational dynamics of the pulses are rigorously recovered as a finite-dimensional flow on the manifold. The normal form for the projected dynamics of the oscillatory pulse shows that it is created in a supercritical Poincare-Hopf bifurcation.
引用
收藏
页码:743 / 763
页数:21
相关论文
共 21 条
[1]   A TOPOLOGICAL INVARIANT ARISING IN THE STABILITY ANALYSIS OF TRAVELING WAVES [J].
ALEXANDER, J ;
GARDNER, R ;
JONES, C .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1990, 410 :167-212
[2]   Dynamics of the parametrically driven NLS solitons beyond the onset of the oscillatory instability [J].
Alexeeva, NV ;
Barashenkov, IV ;
Pelinovsky, DE .
NONLINEARITY, 1999, 12 (01) :103-140
[3]   STABILITY DIAGRAM OF THE PHASE-LOCKED SOLITONS IN THE PARAMETRICALLY DRIVEN, DAMPED NONLINEAR SCHRODINGER-EQUATION [J].
BARASHENKOV, IV ;
BOGDAN, MM ;
KOROBOV, VI .
EUROPHYSICS LETTERS, 1991, 15 (02) :113-118
[4]   TOPOGRAPHY OF ATTRACTORS OF THE PARAMETRICALLY DRIVEN NONLINEAR SCHRODINGER-EQUATION [J].
BONDILA, M ;
BARASHENKOV, IV ;
BOGDAN, MM .
PHYSICA D, 1995, 87 (1-4) :314-320
[5]  
CHANG PC, 2000, THESIS S FRASER U
[6]   Renormalization group and singular perturbations: Multiple scales, boundary layers, and reductive perturbation theory [J].
Chen, LY ;
Goldenfeld, N ;
Oono, Y .
PHYSICAL REVIEW E, 1996, 54 (01) :376-394
[7]   Invariant foliations for C-1 semigroups in Banach spaces [J].
Chen, XY ;
Hale, JK ;
Tan, B .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1997, 139 (02) :283-318
[8]  
DOELMAN A, 2007, IN PRESS SIAM J MATH
[9]   Meandering of the spiral tip: An alternative approach [J].
Golubitsky, M ;
LeBlanc, VG ;
Melbourne, I .
JOURNAL OF NONLINEAR SCIENCE, 1997, 7 (06) :557-586
[10]   Hopf bifurcation from rotating waves and patterns in physical space [J].
Golubitsky, M ;
LeBlanc, VG ;
Melbourne, I .
JOURNAL OF NONLINEAR SCIENCE, 2000, 10 (01) :69-101