Smoothness Morrey Spaces of regular distributions, and some unboundedness property

被引:19
作者
Haroske, Dorothee D. [1 ]
Moura, Susana D. [2 ]
Skrzypczak, Leszek [3 ]
机构
[1] Univ Jena, Inst Math, D-07737 Jena, Germany
[2] Univ Coimbra, Dept Math, CMUC, P-3001454 Coimbra, Portugal
[3] Adam Mickiewicz Univ, Fac Math & Comp Sci, Ul Umultowska 87, PL-61614 Poznan, Poland
关键词
Smoothness Morrey spaces; Regular distributions; Growth envelope; TRIEBEL-LIZORKIN SPACES; BESOV-MORREY; EMBEDDINGS; ENVELOPES;
D O I
10.1016/j.na.2016.03.005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study smoothness spaces of Morrey type on R-n and characterise in detail when the spaces contain only regular distributions, i.e. when they can be embedded into L-1(loc). We also show that in all cases when it makes sense to study the growth envelope function of the proper smoothness Morrey spaces, it is always infinite. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:218 / 244
页数:27
相关论文
共 45 条
[1]  
[Anonymous], 2002, ELECT J DIFFER EQU C
[2]  
[Anonymous], 1992, Theory of function spaces, DOI DOI 10.1007/978-3-0346-0419-2
[3]  
[Anonymous], 2002, ELECTRON J DIFFER EQ
[4]  
[Anonymous], 2006, THEORY FUNCTION SPAC
[5]  
[Anonymous], 2006, J. Funct. Spaces Appl, DOI DOI 10.1155/2006/921520
[6]  
[Anonymous], 2010, Theory of Function Spaces
[7]  
Bennett C., 1988, Interpolation of operators
[8]  
Edmunds D. E., 1996, Cambridge Tracts in Mathematics
[10]  
Haroske D D., 2002, LIMITING EMBEDDINGS