Relational Reasoning via Probabilistic Coupling

被引:20
作者
Barthe, Gilles [1 ]
Espitau, Thomas [1 ,2 ]
Gregoire, Benjamin [3 ]
Hsu, Justin [4 ]
Stefanesco, Leo [1 ,5 ]
Strub, Pierre-Yves [1 ]
机构
[1] IMDEA Software, Madrid, Spain
[2] ENS Cachan, Cachan, France
[3] Inria, Sophia Antipolis, France
[4] Univ Penn, Philadelphia, PA 19104 USA
[5] ENS Lyon, Lyon, France
来源
LOGIC FOR PROGRAMMING, ARTIFICIAL INTELLIGENCE, AND REASONING, (LPAR-20 2015) | 2015年 / 9450卷
关键词
D O I
10.1007/978-3-662-48899-7_27
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Probabilistic coupling is a powerful tool for analyzing pairs of probabilistic processes. Roughly, coupling two processes requires finding an appropriate witness process that models both processes in the same probability space. Couplings are powerful tools proving properties about the relation between two processes, include reasoning about convergence of distributions and stochastic dominance-a probabilistic version of a monotonicity property. While the mathematical definition of coupling looks rather complex and cumbersome to manipulate, we show that the relational program logic pRHL-the logic underlying the EasyCrypt cryptographic proof assistant-already internalizes a generalization of probabilistic coupling. With this insight, constructing couplings is no harder than constructing logical proofs. We demonstrate how to express and verify classic examples of couplings in pRHL, and we mechanically verify several couplings in EasyCrypt.
引用
收藏
页码:387 / 401
页数:15
相关论文
共 12 条
[1]  
[Anonymous], 2008, Grundlehren der mathematischen Wissenschaften Fundamental Principles of Mathematical Sciences
[2]  
Barthe Gilles, 2011, FM 2011: Formal Methods. Proceedings 17th International Symposium on Formal Methods, P200, DOI 10.1007/978-3-642-21437-0_17
[3]  
Barthe G, 2011, LECT NOTES COMPUT SC, V6841, P71, DOI 10.1007/978-3-642-22792-9_5
[4]   Secure information flow by self-composition [J].
Barthe, Gilles ;
D'Argenio, Pedro R. ;
Rezk, Tamara .
MATHEMATICAL STRUCTURES IN COMPUTER SCIENCE, 2011, 21 (06) :1207-1252
[5]   Formal Certification of Code-Based Cryptographic Proofs [J].
Barthe, Gilles ;
Gregoire, Benjamin ;
Beguelin, Santiago Zanella .
ACM SIGPLAN NOTICES, 2009, 44 (01) :90-101
[6]   Simple relational correctness proofs for static analyses and program transformations [J].
Benton, N .
ACM SIGPLAN NOTICES, 2004, 39 (01) :14-25
[7]  
Deng Y, 2011, CMUCS11110 CMUCS11110
[8]  
Lindvall Torgny, 2002, Lectures on the Coupling Method
[9]  
Thorisson Hermann, 2000, PROB APPL S
[10]   Relational separation logic [J].
Yang, Hongseok .
THEORETICAL COMPUTER SCIENCE, 2007, 375 (1-3) :308-334