Retinal Vessel Segmentation Through Denoising and Mathematical Morphology

被引:4
作者
Savelli, Benedetta [1 ]
Marchesi, Agnese [1 ]
Bria, Alessandro [1 ]
Marrocco, Claudio [1 ]
Molinara, Mario [1 ]
Tortorella, Francesco [1 ]
机构
[1] Univ Cassino & Southern Latium, DIEI, Cassino, FR, Italy
来源
IMAGE ANALYSIS AND PROCESSING (ICIAP 2017), PT II | 2017年 / 10485卷
关键词
Color fundus images; Retinal vessel segmentation; Denoising; Mathematical morphology; BLOOD-VESSELS; IMAGES; LEVEL;
D O I
10.1007/978-3-319-68548-9_25
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Automated retinal blood vessel segmentation plays an important role in the diagnosis and treatment of various cardiovascular and ophthalmologic diseases. In this paper, an unsupervised algorithm based on denoising and mathematical morphology is proposed to extract blood vessels from color fundus images. Specifically, our method consists of the following steps: (i) green channel extraction; (ii) non-local means denoising; (iii) vessel vasculature enhancement by means of a sum of black top-hat transforms; and (iv) image thresholding for the final segmentation. This method stands out for its simplicity, robustness to parameters change and low computational complexity. Experimental results on the publicly available database DRIVE show our method to be effective in segmenting blood vessels, achieving an accuracy comparable to that of unsupervised state-of-the-art methodologies.
引用
收藏
页码:267 / 276
页数:10
相关论文
共 31 条
  • [1] An Active Contour Model for Segmenting and Measuring Retinal Vessels
    Al-Diri, Bashir
    Hunter, Andrew
    Steel, David
    [J]. IEEE TRANSACTIONS ON MEDICAL IMAGING, 2009, 28 (09) : 1488 - 1497
  • [2] Trainable COSFIRE filters for vessel delineation with application to retinal images
    Azzopardi, George
    Strisciuglio, Nicola
    Vento, Mario
    Petkov, Nicolai
    [J]. MEDICAL IMAGE ANALYSIS, 2015, 19 (01) : 46 - 57
  • [3] An effective learning strategy for cascaded object detection
    Bria, A.
    Marrocco, C.
    Molinara, M.
    Tortorella, F.
    [J]. INFORMATION SCIENCES, 2016, 340 : 17 - 26
  • [4] Bria A, 2012, INT C PATT RECOG, P3439
  • [5] Non-Local Means Denoising
    Buades, Antoni
    Coll, Bartomeu
    Morel, Jean-Michel
    [J]. IMAGE PROCESSING ON LINE, 2011, 1 : 208 - 212
  • [6] DETECTION OF BLOOD-VESSELS IN RETINAL IMAGES USING TWO-DIMENSIONAL MATCHED-FILTERS
    CHAUDHURI, S
    CHATTERJEE, S
    KATZ, N
    NELSON, M
    GOLDBAUM, M
    [J]. IEEE TRANSACTIONS ON MEDICAL IMAGING, 1989, 8 (03) : 263 - 269
  • [7] Discriminative vessel segmentation in retinal images by fusing context-aware hybrid features
    Cheng, Erkang
    Du, Liang
    Wu, Yi
    Zhu, Ying J.
    Megalooikonomou, Vasileios
    Ling, Haibin
    [J]. MACHINE VISION AND APPLICATIONS, 2014, 25 (07) : 1779 - 1792
  • [8] Chutatape O, 1998, P ANN INT IEEE EMBS, V20, P3144, DOI 10.1109/IEMBS.1998.746160
  • [9] Fang B, 2003, 2003 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOL 2, PROCEEDINGS, P157
  • [10] An approach to localize the retinal blood vessels using bit planes and centerline detection
    Fraz, M. M.
    Barman, S. A.
    Remagnino, P.
    Hoppe, A.
    Basit, A.
    Uyyanonvara, B.
    Rudnicka, A. R.
    Owen, C. G.
    [J]. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2012, 108 (02) : 600 - 616