Subgroups of the adjoint group of a radical ring

被引:13
作者
Amberg, B [1 ]
Dickenschied, O
Sysak, YP
机构
[1] Univ Mainz, Fachbereich Math, Dept Math, D-55099 Mainz, Germany
[2] Ukrainian Acad Sci, Inst Math, UA-252601 Kiev, Ukraine
来源
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES | 1998年 / 50卷 / 01期
关键词
D O I
10.4153/CJM-1998-001-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It is shown that the adjoint group R-o of an arbitrary radical ring R has a series with abelian factors and that its finite subgroups are nilpotent. Moreover, some criteria for subgroups of R-o to be locally nilpotent are given.
引用
收藏
页码:3 / 15
页数:13
相关论文
共 15 条
  • [1] ON THE ADJOINT GROUP OF A RADICAL RING
    AMBERG, B
    DICKENSCHIED, O
    [J]. CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 1995, 38 (03): : 262 - 270
  • [2] Amberg B., 1992, Products of Groups
  • [3] AMBERG B, 1995, P GROUPS KOR 1994, P8
  • [4] [Anonymous], 1990, IZV AKAD NAUK SSSR M
  • [5] BROWN KA, 1982, J LOND MATH SOC, V26, P425
  • [6] Jacobson N., 1964, AM MATH SOC C PUBL, V37
  • [7] WEAK MAXIMALITY CONDITION AND POLYCYCLIC GROUPS
    KIM, YK
    RHEMTULLA, AH
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1995, 123 (03) : 711 - 714
  • [8] APPLICATIONS OF A NEW K-THEORETIC THEOREM TO SOLUBLE GROUP-RINGS
    KROPHOLLER, PH
    LINNELL, PA
    MOODY, JA
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1988, 104 (03) : 675 - 684
  • [9] NEROSLAVSKII OM, 1973, VESCI AKAD NAVUK FMN, V134, P5
  • [10] Robinson D. J. S., 1972, Finiteness Conditions and Generalized Soluble Groups, V62