Subgroups of the adjoint group of a radical ring

被引:13
作者
Amberg, B [1 ]
Dickenschied, O
Sysak, YP
机构
[1] Univ Mainz, Fachbereich Math, Dept Math, D-55099 Mainz, Germany
[2] Ukrainian Acad Sci, Inst Math, UA-252601 Kiev, Ukraine
来源
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES | 1998年 / 50卷 / 01期
关键词
D O I
10.4153/CJM-1998-001-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It is shown that the adjoint group R-o of an arbitrary radical ring R has a series with abelian factors and that its finite subgroups are nilpotent. Moreover, some criteria for subgroups of R-o to be locally nilpotent are given.
引用
收藏
页码:3 / 15
页数:13
相关论文
共 15 条
[1]   ON THE ADJOINT GROUP OF A RADICAL RING [J].
AMBERG, B ;
DICKENSCHIED, O .
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 1995, 38 (03) :262-270
[2]  
Amberg B., 1992, Products of Groups
[3]  
AMBERG B, 1995, P GROUPS KOR 1994, P8
[4]  
[Anonymous], 1990, IZV AKAD NAUK SSSR M
[5]  
BROWN KA, 1982, J LOND MATH SOC, V26, P425
[6]  
Jacobson N., 1964, AM MATH SOC C PUBL, V37
[7]   WEAK MAXIMALITY CONDITION AND POLYCYCLIC GROUPS [J].
KIM, YK ;
RHEMTULLA, AH .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1995, 123 (03) :711-714
[8]   APPLICATIONS OF A NEW K-THEORETIC THEOREM TO SOLUBLE GROUP-RINGS [J].
KROPHOLLER, PH ;
LINNELL, PA ;
MOODY, JA .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1988, 104 (03) :675-684
[9]  
NEROSLAVSKII OM, 1973, VESCI AKAD NAVUK FMN, V134, P5
[10]  
Robinson D. J. S., 1972, Finiteness Conditions and Generalized Soluble Groups, V62