Weight distributions of cyclic self-dual codes

被引:44
作者
Nedeloaia, CS [1 ]
机构
[1] Univ Limoges, LACO, F-87060 Limoges, France
[2] INRIA, Projet CODES, F-78153 Le Chesnay, France
关键词
cyclic codes; self-dual codes; shadow codes; squaring construction; vertical bar u vertical bar u plus v vertical bar construction; weight enumerator;
D O I
10.1109/TIT.2003.811921
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We give a 1-level squaring construction for binary repeated-root cyclic codes of length n = 2(a)b, a greater than or equal to 1, b odd. This allows us to obtain the weight distributions of all cyclic binary self-dual codes of lengths up to 110, which are not accessible by direct computation. We also use the shadow construction, as a particular method for Type I self-dual codes.
引用
收藏
页码:1582 / 1591
页数:10
相关论文
共 9 条
[1]   Cyclic codes and self-dual codes over F2+uF2 [J].
Bonnecaze, A ;
Udaya, P .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1999, 45 (04) :1250-1255
[2]  
Bosma W., 1995, HDB MAGMA FUNCTIONS
[3]   ON REPEATED-ROOT CYCLIC CODES [J].
CASTAGNOLI, G ;
MASSEY, JL ;
SCHOELLER, PA ;
VONSEEMANN, N .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1991, 37 (02) :337-342
[4]   A NEW UPPER BOUND ON THE MINIMAL DISTANCE OF SELF-DUAL CODES [J].
CONWAY, JH ;
SLOANE, NJA .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1990, 36 (06) :1319-1333
[5]  
LIN S, 1998, TRELLIS TRELLIS BASE
[6]  
Pless V., 1998, HDB CODING THEORY
[7]  
Pless V., 1998, Introduction to the Theory of Error-Correcting Codes, Vthird
[8]   CYCLIC SELF-DUAL CODES [J].
SLOANE, NJA ;
THOMPSON, JG .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1983, 29 (03) :364-366
[9]   REPEATED-ROOT CYCLIC CODES [J].
VANLINT, JH .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1991, 37 (02) :343-345