On the Monodromy of Milnor Fibers of Hyperplane Arrangements

被引:6
|
作者
Bailet, Pauline [1 ]
机构
[1] Univ Nice Sophia Antipolis, CNRS, LJAD, UMR 7351, F-06100 Nice, France
来源
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES | 2014年 / 57卷 / 04期
关键词
hyperplane arrangements; Milnor fiber; monodromy; local systems; COHOMOLOGY; VARIETIES;
D O I
10.4153/CMB-2014-032-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We describe a general setting where the monodromy action on the first cohomology group of the Milnor fiber of a hyperplane arrangement is the identity.
引用
收藏
页码:697 / 707
页数:11
相关论文
共 50 条
  • [22] Cohomology of the Milnor Fibre of a Hyperplane Arrangement with Symmetry
    Dimca, Alexandru
    Lehrer, Gus
    CONFIGURATION SPACES: GEOMETRY, TOPOLOGY AND REPRESENTATION THEORY, 2016, 14 : 233 - 274
  • [23] On the monodromy of Milnor open books
    Altinok, Selma
    Bhupal, Mohan
    TURKISH JOURNAL OF MATHEMATICS, 2018, 42 (03) : 1005 - 1017
  • [24] Bernstein-Sato polynomials of hyperplane arrangements
    Saito, Morihiko
    SELECTA MATHEMATICA-NEW SERIES, 2016, 22 (04): : 2017 - 2057
  • [25] HYPERGEOMETRIC FUNCTIONS AND HYPERPLANE ARRANGEMENTS
    Jambu, Michel
    ALGEBRAIC APPROACH TO DIFFERENTIAL EQUATIONS, 2010, : 210 - 224
  • [26] Degeneration of Orlik–Solomon algebras and Milnor fibers of complex line arrangements
    Pauline Bailet
    Masahiko Yoshinaga
    Geometriae Dedicata, 2015, 175 : 49 - 56
  • [27] THE PERVERSE EIGENSPACE OF ONE FOR THE MILNOR MONODROMY
    Massey, David
    ANNALES DE L INSTITUT FOURIER, 2022, 72 (04) : 1535 - 1546
  • [28] Modular forms with poles on hyperplane arrangements
    Wang, Haowu
    Williams, Brandon
    ALGEBRAIC GEOMETRY, 2024, 11 (04): : 506 - 568
  • [29] Hyperplane Arrangements in polymake
    Kastner, Lars
    Panizzut, Marta
    MATHEMATICAL SOFTWARE - ICMS 2020, 2020, 12097 : 232 - 240
  • [30] Degeneration of Orlik-Solomon algebras and Milnor fibers of complex line arrangements
    Bailet, Pauline
    Yoshinaga, Masahiko
    GEOMETRIAE DEDICATA, 2015, 175 (01) : 49 - 56