Kernel identification in continuous fluidized bed spray agglomeration from steady state data

被引:9
作者
Otto, Eric [1 ]
Duerr, Robert [2 ]
Strenzke, Gerd [3 ]
Palis, Stefan [1 ,5 ]
Bueck, Andreas [4 ]
Tsotsas, Evangelos [3 ]
Kienle, Achim [1 ,2 ]
机构
[1] Otto von Guericke Univ, Automat Modelling, Univ Pl 2, D-39106 Magdeburg, Germany
[2] Max Planck Inst Dynam Complex Tech Syst, Proc Synth & Proc Dynam, Sandtorstr 1, D-39106 Magdeburg, Germany
[3] Otto von Guericke Univ, Thermal Proc Engn, Univ Pl 2, D-39106 Magdeburg, Germany
[4] Friedrich Alexander Univ Erlangen Nurnberg, Inst Particle Technol, Cauerstr 4, D-91058 Erlangen, Germany
[5] Natl Res Univ, Moscow Power Engn Inst, Moscow, Russia
关键词
Continuous spray agglomeration; Parameter identification; Population balance equation; Agglomeration kernel; Kapur kernel; AGGREGATION KINETICS; LAYERING GRANULATION; MODEL; GROWTH;
D O I
10.1016/j.apt.2021.05.028
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Fluidized bed spray agglomeration is an important industrial particle formation process. In particular, the continuous operation mode is able to provide a constant stream of product particles with constant quality in terms of particle properties. Mathematical process modeling represents a valuable tool for a thorough analysis of the involved mechanistic processes and can further be used for process intensification and control. Sophisticated models describing the quantitative effect of process conditions on particle properties are particularly important. Therefore, in this contribution the influence of the seven most important operational parameters on the particle size distribution is modeled, including fluidization and binder properties. To this end, a population balance process model with the three-parametric Kapur kernel is fitted to experimental data. The first main result of this contribution is the quantitative description of the dependency between the agglomeration rate and the process conditions by multidimensional paraboloids. The second main result is the introduction of a general method by which this quantitative formulation is obtained. (c) 2021 The Society of Powder Technology Japan. Published by Elsevier B.V. and The Society of Powder Technology Japan. This is an open access article under the CC BY-NC-ND license (http://creativecommons. org/licenses/by-nc-nd/4.0/).
引用
收藏
页码:2517 / 2529
页数:13
相关论文
共 42 条
[1]   POPULATION BALANCE MODELING OF DRUM GRANULATION OF MATERIALS WITH WIDE SIZE DISTRIBUTION [J].
ADETAYO, AA ;
LITSTER, JD ;
PRATSINIS, SE ;
ENNIS, BJ .
POWDER TECHNOLOGY, 1995, 82 (01) :37-49
[2]  
[Anonymous], 2016, ENCY FOOD HLTH
[3]   Milk powder agglomerate growth and properties in fluidized bed agglomeration [J].
Barkouti, A. ;
Turchiuli, C. ;
Carcel, J. A. ;
Dumoulin, E. .
DAIRY SCIENCE & TECHNOLOGY, 2013, 93 (4-5) :523-535
[4]  
Bück A, 2016, J PROCESS CONTR, V45, P65, DOI [10.1016/j.jprocont.2016:07.003, 10.1016/j.jprocont.2016.07.003]
[5]  
Bühlmann P, 2011, SPRINGER SER STAT, P1, DOI 10.1007/978-3-642-20192-9
[6]   Influence of process variables on internal particle structure in spray fluidized bed agglomeration [J].
Dadkhah, M. ;
Tsotsas, E. .
POWDER TECHNOLOGY, 2014, 258 :165-173
[7]   Influence of process variables on spray agglomeration process in a continuously operated horizontal fluidized bed [J].
Du, J. ;
Bueck, A. ;
Tsotsas, E. .
POWDER TECHNOLOGY, 2020, 363 :195-206
[8]   Online parameter identification of facet growth kinetics in crystal morphology population balance models [J].
Duerr, Robert ;
Palis, Stefan ;
Kienle, Achim .
NEW PARADIGM OF PARTICLE SCIENCE AND TECHNOLOGY, PROCEEDINGS OF THE 7TH WORLD CONGRESS ON PARTICLE TECHNOLOGY, 2015, 102 :1336-1345
[9]  
Durr R., 2019, ADV DRYING SCI TECHN, P27
[10]   Estimation of aggregation kernels based on Laurent polynomial approximation [J].
Eisenschmidt, H. ;
Soumaya, M. ;
Bajcinca, N. ;
Le Borne, S. ;
Sundmacher, K. .
COMPUTERS & CHEMICAL ENGINEERING, 2017, 103 :210-217