Distribution-dependent feature selection for deep neural networks

被引:1
作者
Zhao, Xuebin [1 ]
Li, Weifu [1 ]
Chen, Hong [1 ]
Wang, Yingjie [2 ]
Chen, Yanhong [3 ]
John, Vijay [4 ]
机构
[1] Huazhong Agr Univ, Coll Sci, Wuhan 430062, Peoples R China
[2] Huazhong Agr Univ, Coll Informat, Wuhan 430062, Peoples R China
[3] Chinese Acad Sci, Natl Space Sci Ctr, Beijing 100190, Peoples R China
[4] Toyota Technol Inst, Res Ctr Smart Vehicles, Tempaku Ku, 2-12-1 Hisakata, Nagoya, Aichi 4688511, Japan
基金
中国国家自然科学基金;
关键词
Feature selection; Coronal mass ejections; Deep neural networks; Interpretability; Hypothesis-testing; FALSE DISCOVERY RATE; REGRESSION; FILTER;
D O I
10.1007/s10489-021-02663-1
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
While deep neural networks (DNNs) have achieved impressive performance on a wide variety of tasks, the black-box nature hinders their applicability to high-risk, decision-making fields. In such fields, besides accurate prediction, it is also desired to provide interpretable insights into DNNs, e.g., screening important features based on their contributions to predictive accuracy. To improve the interpretability of DNNs, this paper originally proposes a new feature selection algorithm for DNNs by integrating the knockoff technique and the distribution information of irrelevant features. With the help of knockoff features and central limit theorem, we state that the irrelevant feature's statistic follows a known Gaussian distribution under mild conditions. This information is applied in hypothesis testing to discover key features associated with the DNNs. Empirical evaluations on simulated data demonstrate that the proposed method can select more true informative features with higher F-1 scores. Meanwhile, the Friedman test and the post-hoc Nemenyi test are employed to validate the superiority of the proposed method. Then we apply our method to Coronal Mass Ejections (CME) data and uncover the key features which contribute to the DNN-based CME arrival time.
引用
收藏
页码:4432 / 4442
页数:11
相关论文
共 50 条
  • [21] Embedded feature selection for neural networks via learnable drop layer
    Jimenez-Navarro, M. J.
    Martinez-Ballesteros, M.
    Brito, I. S.
    Martinez-alvarez, F.
    Asencio-Cortes, G.
    LOGIC JOURNAL OF THE IGPL, 2024,
  • [22] Evaluation of Feature Selection Methods in Estimation of Precipitation Based on Deep Learning Artificial Neural Networks
    Sattari, Mohammad Taghi
    Avram, Anca
    Apaydin, Halit
    Matei, Oliviu
    WATER RESOURCES MANAGEMENT, 2023, 37 (15) : 5871 - 5891
  • [24] Feature Selection, Deep Neural Network and Trend Prediction
    Fang Y.
    Journal of Shanghai Jiaotong University (Science), 2018, 23 (2) : 297 - 307
  • [25] Evaluation of Feature Selection Methods in Estimation of Precipitation Based on Deep Learning Artificial Neural Networks
    Mohammad Taghi Sattari
    Anca Avram
    Halit Apaydin
    Oliviu Matei
    Water Resources Management, 2023, 37 : 5871 - 5891
  • [26] Study on feature weight and feature selection in pattern classification neural networks
    Li, RP
    Mukaidono, M
    Turksen, IB
    INFORMATION INTELLIGENCE AND SYSTEMS, VOLS 1-4, 1996, : 1972 - 1976
  • [27] Deep Belief Networks with Feature Selection for Sentiment Classification
    Ruangkanokmas, Patrawut
    Achalakul, Tiranee
    Akkarajitsakul, Khajonpong
    2016 7TH INTERNATIONAL CONFERENCE ON INTELLIGENT SYSTEMS, MODELLING AND SIMULATION (ISMS), 2016, : 9 - 14
  • [28] Adaptive Test Selection for Deep Neural Networks
    Gao, Xinyu
    Feng, Yang
    Yin, Yining
    Liu, Zixi
    Chen, Zhenyu
    Xu, Baowen
    2022 ACM/IEEE 44TH INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING (ICSE 2022), 2022, : 73 - 85
  • [29] Toward the scalability of neural networks through feature selection
    Peteiro-Barral, D.
    Bolon-Canedo, V.
    Alonso-Betanzos, A.
    Guijarro-Berdinas, B.
    Sanchez-Marono, N.
    EXPERT SYSTEMS WITH APPLICATIONS, 2013, 40 (08) : 2807 - 2816
  • [30] Robust Test Selection for Deep Neural Networks
    Sun, Weifeng
    Yan, Meng
    Liu, Zhongxin
    Lo, David
    IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, 2023, 49 (12) : 5250 - 5278