Rapid identification of pathogenic bacteria using Raman spectroscopy and deep learning

被引:619
作者
Ho, Chi-Sing [1 ,2 ]
Jean, Neal [3 ,4 ]
Hogan, Catherine A. [5 ,6 ]
Blackmon, Lena [2 ]
Jeffrey, Stefanie S. [7 ]
Holodniy, Mark [8 ,9 ,10 ]
Banaei, Niaz [5 ,6 ,10 ]
Saleh, Amr A. E. [2 ,11 ]
Ermon, Stefano [3 ]
Dionne, Jennifer [2 ]
机构
[1] Stanford Univ, Dept Appl Phys, Stanford, CA 94305 USA
[2] Stanford Univ, Dept Mat Sci & Engn, Stanford, CA 94305 USA
[3] Stanford Univ, Dept Comp Sci, Stanford, CA 94305 USA
[4] Stanford Univ, Dept Elect Engn, Stanford, CA 94305 USA
[5] Stanford Univ, Dept Pathol, Sch Med, Stanford, CA 94305 USA
[6] Stanford Hlth Care, Clin Microbiol Lab, Stanford, CA USA
[7] Stanford Univ, Sch Med, Dept Surg, Stanford, CA 94305 USA
[8] Stanford Univ, Dept Med, Sch Med, Stanford, CA 94305 USA
[9] VA Palo Alto Hlth Care Syst, Palo Alto, CA USA
[10] Stanford Univ, Dept Med, Sch Med, Div Infect Dis & Geog Med, Stanford, CA 94305 USA
[11] Cairo Univ, Fac Engn, Dept Engn Math & Phys, Giza, Egypt
基金
美国国家科学基金会;
关键词
RESISTANCE; INFECTION; CHILDREN;
D O I
10.1038/s41467-019-12898-9
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Raman optical spectroscopy promises label-free bacterial detection, identification, and antibiotic susceptibility testing in a single step. However, achieving clinically relevant speeds and accuracies remains challenging due to weak Raman signal from bacterial cells and numerous bacterial species and phenotypes. Here we generate an extensive dataset of bacterial Raman spectra and apply deep learning approaches to accurately identify 30 common bacterial pathogens. Even on low signal-to-noise spectra, we achieve average isolate-level accuracies exceeding 82% and antibiotic treatment identification accuracies of 97.0 +/- 0.3%. We also show that this approach distinguishes between methicillin-resistant and -susceptible isolates of Staphylococcus aureus (MRSA and MSSA) with 89 +/- 0.1% accuracy. We validate our results on clinical isolates from 50 patients. Using just 10 bacterial spectra from each patient isolate, we achieve treatment identification accuracies of 99.7%. Our approach has potential for culture-free pathogen identification and antibiotic susceptibility testing, and could be readily extended for diagnostics on blood, urine, and sputum.
引用
收藏
页数:8
相关论文
共 52 条
[2]  
[Anonymous], J BIOPHOTONICS
[3]  
[Anonymous], TECH REP
[4]  
[Anonymous], ANALYST
[5]  
[Anonymous], TECH REP
[6]  
[Anonymous], PROC CVPR IEEE
[7]  
[Anonymous], 2013, INTENSIVE CARE MED, DOI DOI 10.1007/S00134-012-2769-8
[8]  
[Anonymous], ADV NEURAL INFORM PR
[9]  
[Anonymous], 2014, Neural Information Processing Systems
[10]   Drug-Resistant Staphylococcus aureus Strains Reveal Distinct Biochemical Features with Raman Microspectroscopy [J].
Ayala, Oscar D. ;
Wakeman, Catherine A. ;
Pence, Isaac J. ;
Gaddy, Jennifer A. ;
Slaughter, James C. ;
Skaar, Eric P. ;
Mahadevan-Jansen, Anita .
ACS INFECTIOUS DISEASES, 2018, 4 (08) :1197-1210