Multibranch Adaptive Fusion Network for RGBT Tracking

被引:15
作者
Li, Yadong [1 ]
Lai, Huicheng [1 ]
Wang, Liejun [1 ]
Jia, Zhenhong [1 ]
机构
[1] Xinjiang Univ, Sch Informat Sci & Engn, Autonomous Univ Key Lab Signal & Informat Proc, Urumqi 830046, Peoples R China
基金
中国国家自然科学基金;
关键词
Convolution; Target tracking; Kernel; Feature extraction; Aggregates; Sensors; Adaptive systems; RGBT tracking; multiscale feature; multibranch; adaptive fusion;
D O I
10.1109/JSEN.2022.3154657
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
RGBT tracking has been increasingly investigated in visual tracking due to the strong complementary nature of visible and infrared images. However, in the established RGBT tracking algorithms, multiscale information has not been well exploited and utilized, which limits the performance of the tracker. In this paper, a novel multibranch adaptive fusion network is proposed, which aggregates multiscale information from multiple branches. Specifically, our backbone network draws on the modified VGG-M. To extract the multiscale features, we design a multiscale adapter, which adds two small convolution kernel branches to the backbone in each layer and each modality in a parallel manner. We also design a multibranch fusion module to adaptively aggregate the features from multiple branches and the previous layer. Moreover, we propose a multimodal fusion module for aggregating features between modalities, which could mitigate the impact of noise from low-quality sources. Finally, many results on two recent RGBT tracking datasets show that our method significantly outperforms other state-of-the-art tracking methods.
引用
收藏
页码:7084 / 7093
页数:10
相关论文
共 44 条
[1]  
Bolme DS, 2010, PROC CVPR IEEE, P2544, DOI 10.1109/CVPR.2010.5539960
[2]  
Chen G., 2019, ARXIV190505928
[3]   DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs [J].
Chen, Liang-Chieh ;
Papandreou, George ;
Kokkinos, Iasonas ;
Murphy, Kevin ;
Yuille, Alan L. .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2018, 40 (04) :834-848
[4]   Challenge-Aware RGBT Tracking [J].
Li, Chenglong ;
Liu, Lei ;
Lu, Andong ;
Ji, Qing ;
Tang, Jin .
COMPUTER VISION - ECCV 2020, PT XXII, 2020, 12367 :222-237
[5]   Learning Spatially Regularized Correlation Filters for Visual Tracking [J].
Danelljan, Martin ;
Hager, Gustav ;
Khan, Fahad Shahbaz ;
Felsberg, Michael .
2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2015, :4310-4318
[6]  
Deng J, 2009, PROC CVPR IEEE, P248, DOI 10.1109/CVPRW.2009.5206848
[7]  
Ding X., PROC IEEECVF C COMPU, P10886
[8]   Deep Adaptive Fusion Network for High Performance RGBT Tracking [J].
Gao, Yuan ;
Li, Chenglong ;
Zhu, Yabin ;
Tang, Jin ;
He, Tao ;
Wang, Futian .
2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW), 2019, :91-99
[9]   Struck: Structured Output Tracking with Kernels [J].
Hare, Sam ;
Golodetz, Stuart ;
Saffari, Amir ;
Vineet, Vibhav ;
Cheng, Ming-Ming ;
Hicks, Stephen L. ;
Torr, Philip H. S. .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2016, 38 (10) :2096-2109
[10]   High-Speed Tracking with Kernelized Correlation Filters [J].
Henriques, Joao F. ;
Caseiro, Rui ;
Martins, Pedro ;
Batista, Jorge .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2015, 37 (03) :583-596