Time-periodic phases in populations of nonlinearly coupled oscillators with bimodal frequency distributions

被引:65
作者
Bonilla, LL
Vicente, CJP
Spigler, R
机构
[1] Univ Carlos III Madrid, Escuela Politecn Super, Leganes 28911, Spain
[2] Univ Barcelona, Fac Fis, Dept Fis Fonamental, E-08028 Barcelona, Spain
[3] Univ Roma Tre, Dipartimento Matemat, I-00146 Rome, Italy
来源
PHYSICA D | 1998年 / 113卷 / 01期
关键词
oscillator synchronization; Kuramoto model; bifurcations with symmetry;
D O I
10.1016/S0167-2789(97)00187-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The mean field Kuramoto model describing the synchronization of a population of phase oscillators with a bimodal frequency distribution is analyzed (by the method of multiple scales) near regions in its phase diagram corresponding to synchronization to phases with a time-periodic order parameter. The richest behavior is found near the tricritical point where the incoherent, stationarily synchronized, "traveling wave" and "standing wave" phases coexist. The behavior near the tricritical point can be extrapolated to the rest of the phase diagram. Direct Brownian simulation of the model confirms our findings.
引用
收藏
页码:79 / 97
页数:19
相关论文
共 26 条
[1]   AMPLITUDE RESPONSE OF COUPLED OSCILLATORS [J].
ARONSON, DG ;
ERMENTROUT, GB ;
KOPELL, N .
PHYSICA D, 1990, 41 (03) :403-449
[2]   DYNAMICS OF A SOFT-SPIN VANHEMMEN MODEL .1. PHASE AND BIFURCATION DIAGRAMS FOR STATIONARY DISTRIBUTIONS [J].
BONILLA, LL ;
CASADO, JM .
JOURNAL OF STATISTICAL PHYSICS, 1989, 56 (1-2) :113-125
[4]   NONLINEAR STABILITY OF INCOHERENCE AND COLLECTIVE SYNCHRONIZATION IN A POPULATION OF COUPLED OSCILLATORS [J].
BONILLA, LL ;
NEU, JC ;
SPIGLER, R .
JOURNAL OF STATISTICAL PHYSICS, 1992, 67 (1-2) :313-380
[5]   GLASSY SYNCHRONIZATION IN A POPULATION OF COUPLED OSCILLATORS [J].
BONILLA, LL ;
VICENTE, CJP ;
RUBI, JM .
JOURNAL OF STATISTICAL PHYSICS, 1993, 70 (3-4) :921-937
[6]  
COLE JD, 1996, MULTIPLE SCALE SINGU
[7]   AMPLITUDE EXPANSIONS FOR INSTABILITIES IN POPULATIONS OF GLOBALLY-COUPLED OSCILLATORS [J].
CRAWFORD, JD .
JOURNAL OF STATISTICAL PHYSICS, 1994, 74 (5-6) :1047-1084
[8]   THE TAKENS BOGDANOV BIFURCATION WITH O(2)-SYMMETRY [J].
DANGELMAYR, G ;
KNOBLOCH, E .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1987, 322 (1565) :243-279
[9]  
GRAY CM, 1987, SOC NEUR ABST, V13, P13
[10]  
Kuramoto Y., 2003, CHEM OSCILLATIONS WA