Inverse problems for matrix Sturm-Liouville operators

被引:16
作者
Yurko, V. [1 ]
机构
[1] Saratov NG Chernyshevskii State Univ, Dept Math, Saratov 410026, Russia
基金
俄罗斯基础研究基金会;
关键词
D O I
10.1134/S1061920806010110
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Inverse spectral problems for nonselfadjoint matrix Sturm-Liouville differential operators on a finite interval and on the half-line are studied. As a main spectral characteristic, we introduce the so-called Weyl matrix and prove that the specification of the Weyl matrix uniquely determines the matrix potential and the coefficients of the boundary conditions. Moreover, for a finite interval, we also study the inverse problems of recovering matrix Sturm-Liouville operators from discrete spectral data ( eigenvalues and "weight" numbers) and from a system of spectra. The results thus obtained are natural generalizations of the classical results in inverse problem theory for scalar Sturm-Liouville operators.
引用
收藏
页码:111 / 118
页数:8
相关论文
共 24 条
[11]  
FREILING G, 2001, INVERSE STURMLIOUVIL
[12]  
GASYMOV MG, 1964, RUSS MATH SURV, V19, P1
[13]  
Gelfand I. M., 1955, AM MATH SOC TRANSL, V1, P253
[14]  
Jodeit M, 1998, MAT FIZ ANAL GEOM, V5, P166
[15]  
Levitan B. M., 1964, Irv. Akad. Nauk SSSR Ser. Mat., V28, P63
[16]  
LEVITAN BM, 1987, INVERSE STURMLIOUVIL
[17]  
MARCHENKO VA, 1986, STURMLIOUVILLE OPERA
[18]  
MENNICKEN R, 2003, NONSELF ADJOINT BOUN
[19]  
Naimark MA., 1968, Linear differential operators. part ii: Linear differential operators in hilbert space
[20]  
PALADHI BR, 1981, P LOND MATH SOC, V43, P169