Solution of Several Functional Equations on Nonunital Semigroups Using Wilson's Functional Equations with Involution

被引:5
作者
Chung, Jaeyoung [1 ]
Sahoo, Prasanna K. [2 ]
机构
[1] Kunsan Natl Univ, Dept Math, Gunsan 573701, South Korea
[2] Univ Louisville, Dept Math, Louisville, KY 40292 USA
基金
新加坡国家研究基金会;
关键词
DALEMBERTS;
D O I
10.1155/2014/463918
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let S be a nonunital commutative semigroup, sigma : S -> S an involution, and C the set of complex numbers. In this paper, first we determine the general solutions f, g : S -> C of Wilson's generalizations of d'Alembert's functional equations f(x + y) + f(x + sigma y) = 2 f(x)g(y) and f(x + y) + f(x + sigma y) = 2g(x)f(y) on nonunital commutative semigroups, and then using the solutions of these equations we solve a number of other functional equations on more general domains.
引用
收藏
页数:9
相关论文
共 22 条
[1]  
Aczel J., 1989, ENCY MATH APPL, V31
[2]  
Aczel J, 2006, Lectures on Functional Equations and their Applications
[3]   On solutions of the second generalization of d'Alembert's functional equation on a restricted domain [J].
Bahyrycz, Anna .
APPLIED MATHEMATICS AND COMPUTATION, 2013, 223 :209-215
[4]   ON A QUADRATIC-TRIGONOMETRIC FUNCTIONAL-EQUATION AND SOME APPLICATIONS [J].
CHUNG, JK ;
EBANKS, BR ;
NG, CT ;
SAHOO, PK .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1995, 347 (04) :1131-1161
[5]  
COROVEI I, 2001, AEQUATIONES MATH, V61, P212, DOI DOI 10.1007/s000100050173
[6]  
COROVEI I, 1980, MATHEMATICA, V22, P33
[7]  
Corovei I., 2002, MATH CLUJ, V44, P137
[8]  
DAlembert J., 1750, Hist. Acad. Berlin, V6, P355
[9]  
de Place Friis P., 2004, Aequ. Math., V67, P12, DOI [10.1007/s00010-002-2665-3, DOI 10.1007/S00010-002-2665-3]
[10]  
Fechner Z, 2009, ACTA SCI MATH, V75, P131