On the effect of laterally varying boundary heat flux on rapidly rotating spherical shell convection

被引:12
作者
Sahoo, Swarandeep [1 ]
Sreenivasan, Binod [1 ]
机构
[1] Indian Inst Sci, Ctr Earth Sci, Bangalore 560012, Karnataka, India
关键词
CORE-MANTLE BOUNDARY; THERMAL-CONVECTION; EARTHS CORE; GEOMAGNETIC-FIELD; SYMMETRY-BREAKING; PRANDTL NUMBER; OUTER BOUNDARY; DYNAMOS; GEODYNAMO; DRIVEN;
D O I
10.1063/1.4998716
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
The onset of convection in a rotating spherical shell subject to laterally varying heat flux at the outer boundary is considered in this paper. The focus is on the geophysically relevant regime of rapid rotation (low Ekman number) where the natural length scale of convection is significantly smaller than the length scale imposed by the boundary heat flux pattern. Contrary to earlier studies at a higher Ekman number, we find a substantial reduction in the onset Rayleigh number Rac with increasing lateral variation. The decrease in Rac is shown to be closely correlated to the equatorial heat flux surplus in the steady, basic state solution. The consistency of such a correlation makes the estimation of Rac possible without solving the full stability problem. The steady baroclinic flow has a strong cyclone-anticyclone asymmetry in the kinetic helicity only for equatorially symmetric lateral variations, with possible implications for dynamo action. Equatorially antisymmetric variations, on the other hand, break the symmetry of the mean flow, in turn negating its helicity. Analysis of the perturbation solution reveals strongly localized clusters through which convection rolls drift in and out at a frequency higher than that for the reference case with homogeneous boundary heat flux. Large lateral variations produce a marked decrease in the azimuthal length scale of columns, which indicates that small-scale motions are essential to the transport of heat in rapidly rotating, localized convection. With an equatorially antisymmetric heat flux pattern, convection in individual clusters goes through an asynchronous wax-wane cycle whose frequency is much lower than the drift rate of the columns. These continual variations in convection intensity may in turn result in fluctuations in the magnetic field intensity, an effect that needs to be considered in dynamo models. Finally, there is a notable analogy between the role of a laterally varying boundary heat flux and the role of a laterally varying magnetic field in confining small-scale convection. Published by AIP Publishing.
引用
收藏
页数:18
相关论文
共 40 条
[1]   EQUATIONS GOVERNING CONVECTION IN EARTHS CORE AND THE GEODYNAMO [J].
BRAGINSKY, SI ;
ROBERTS, PH .
GEOPHYSICAL AND ASTROPHYSICAL FLUID DYNAMICS, 1995, 79 (1-4) :1-97
[2]   THERMAL INSTABILITIES IN RAPIDLY ROTATING SYSTEMS [J].
BUSSE, FH .
JOURNAL OF FLUID MECHANICS, 1970, 44 (NOV26) :441-&
[3]   On the effect of an electrically heterogeneous lower mantle on planetary dynamos [J].
Chan, Kit H. ;
Zhang, Keke ;
Li, Ligang ;
Liao, Xinhao .
PHYSICS OF THE EARTH AND PLANETARY INTERIORS, 2008, 169 (1-4) :204-210
[4]   A numerical dynamo benchmark [J].
Christensen, UR ;
Aubert, J ;
Cardin, P ;
Dormy, E ;
Gibbons, S ;
Glatzmaier, GA ;
Grote, E ;
Honkura, Y ;
Jones, C ;
Kono, M ;
Matsushima, M ;
Sakuraba, A ;
Takahashi, F ;
Tilgner, A ;
Wicht, J ;
Zhang, K .
PHYSICS OF THE EARTH AND PLANETARY INTERIORS, 2001, 128 (1-4) :25-34
[5]  
CRAWFORD JD, 1991, ANNU REV FLUID MECH, V23, P341, DOI 10.1146/annurev.fluid.23.1.341
[6]   Convection in a rapidly rotating spherical shell with an imposed laterally varying thermal boundary condition [J].
Davies, Christopher J. ;
Gubbins, David ;
Jimack, Peter K. .
JOURNAL OF FLUID MECHANICS, 2009, 641 :335-358
[7]   Core flows and heat transfer induced by inhomogeneous cooling with sub- and supercritical convection [J].
Dietrich, W. ;
Hori, K. ;
Wicht, J. .
PHYSICS OF THE EARTH AND PLANETARY INTERIORS, 2016, 251 :36-51
[8]   The onset of thermal convection in rotating spherical shells [J].
Dormy, E ;
Soward, AM ;
Jones, CA ;
Jault, D ;
Cardin, P .
JOURNAL OF FLUID MECHANICS, 2004, 501 :43-70
[9]   Convection in rotating spherical fluid shells with inhomogeneous heat flux at the outer boundary [J].
Gibbons, S. J. ;
Gubbins, D. ;
Zhang, K. .
GEOPHYSICAL AND ASTROPHYSICAL FLUID DYNAMICS, 2007, 101 (5-6) :347-370
[10]   Convection in the Earth's core driven by lateral variations in the core-mantle boundary heat flux [J].
Gibbons, SJ ;
Gubbins, D .
GEOPHYSICAL JOURNAL INTERNATIONAL, 2000, 142 (02) :631-642