Fused inverse-normal method for integrated differential expression analysis of RNA-seq data

被引:0
作者
Prasad, Birbal [1 ]
Li, Xinzhong [1 ]
机构
[1] Tesside Univ, Natl Horiozns Ctr, Sch Hlth & Life Sci, Darlington DL1 1HG, Durham, England
关键词
Meta-analysis; RNA-seq; Glioblastoma; Differential expression; SIGNALING PATHWAYS; METAANALYSIS; GENES; POWERFUL; COLON; RGNEF;
D O I
10.1186/s12859-022-04859-9
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Background: Use of next-generation sequencing technologies to transcriptomics (RNA-seq) for gene expression profiling has found widespread application in studying different biological conditions including cancers. However, RNA-seq experiments are still small sample size experiments due to the cost. Recently, an increased focus has been on meta-analysis methods for integrated differential expression analysis for exploration of potential biomarkers. In this study, we propose a p-value combination method for meta-analysis of multiple independent but related RNA-seq studies that accounts for sample size of a study and direction of expression of genes in individual studies. Results: The proposed method generalizes the inverse-normal method without an increase in statistical or computational complexity and does not pre- or post-hoc filter genes that have conflicting direction of expression in different studies. Thus, the proposed method, as compared to the inverse-normal, has better potential for the discovery of differentially expressed genes (DEGs) with potentially conflicting differential signals from multiple studies related to disease. We demonstrated the use of the proposed method in detection of biologically relevant DEGs in glioblastoma (GBM), the most aggressive brain cancer. Our approach notably enabled the identification of over-expressed tumour suppressor gene RAD51 in GBM compared to healthy controls, which has recently been shown to be a target for inhibition to enhance radiosensitivity of GBM cells during treatment. Pathway analysis identified multiple aberrant GBM related pathways as well as novel regulators such as TCF7L2 and MAPT as important upstream regulators in GBM. Conclusions: The proposed meta-analysis method generalizes the existing inverse-normal method by providing a way to establish differential expression status for genes with conflicting direction of expression in individual RNA-seq studies. Hence, leading to further exploration of them as potential biomarkers for the disease.
引用
收藏
页数:20
相关论文
共 52 条
[1]   The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2018 update [J].
Afgan, Enis ;
Baker, Dannon ;
Batut, Berenice ;
van den Beek, Marius ;
Bouvier, Dave ;
Cech, Martin ;
Chilton, John ;
Clements, Dave ;
Coraor, Nate ;
Gruening, Bjoern A. ;
Guerler, Aysam ;
Hillman-Jackson, Jennifer ;
Hiltemann, Saskia ;
Jalili, Vahid ;
Rasche, Helena ;
Soranzo, Nicola ;
Goecks, Jeremy ;
Taylor, James ;
Nekrutenko, Anton ;
Blankenberg, Daniel .
NUCLEIC ACIDS RESEARCH, 2018, 46 (W1) :W537-W544
[2]  
[Anonymous], 2008, META ANAL GUIDE CALI
[3]   NCBI GEO: archive for functional genomics data sets-update [J].
Barrett, Tanya ;
Wilhite, Stephen E. ;
Ledoux, Pierre ;
Evangelista, Carlos ;
Kim, Irene F. ;
Tomashevsky, Maxim ;
Marshall, Kimberly A. ;
Phillippy, Katherine H. ;
Sherman, Patti M. ;
Holko, Michelle ;
Yefanov, Andrey ;
Lee, Hyeseung ;
Zhang, Naigong ;
Robertson, Cynthia L. ;
Serova, Nadezhda ;
Davis, Sean ;
Soboleva, Alexandra .
NUCLEIC ACIDS RESEARCH, 2013, 41 (D1) :D991-D995
[4]   Genomic sequencing of colorectal adenocarcinomas identifies a recurrent VTI1A-TCF7L2 fusion [J].
Bass, Adam J. ;
Lawrence, Michael S. ;
Brace, Lear E. ;
Ramos, Alex H. ;
Drier, Yotam ;
Cibulskis, Kristian ;
Sougnez, Carrie ;
Voet, Douglas ;
Saksena, Gordon ;
Sivachenko, Andrey ;
Jing, Rui ;
Parkin, Melissa ;
Pugh, Trevor ;
Verhaak, Roel G. ;
Stransky, Nicolas ;
Boutin, Adam T. ;
Barretina, Jordi ;
Solit, David B. ;
Vakiani, Evi ;
Shao, Wenlin ;
Mishina, Yuji ;
Warmuth, Markus ;
Jimenez, Jose ;
Chiang, Derek Y. ;
Signoretti, Sabina ;
Kaelin, William G., Jr. ;
Spardy, Nicole ;
Hahn, William C. ;
Hoshida, Yujin ;
Ogino, Shuji ;
DePinho, Ronald A. ;
Chin, Lynda ;
Garraway, Levi A. ;
Fuchs, Charles S. ;
Baselga, Jose ;
Tabernero, Josep ;
Gabriel, Stacey ;
Lander, Eric S. ;
Getz, Gad ;
Meyerson, Matthew .
NATURE GENETICS, 2011, 43 (10) :964-U67
[5]   CONTROLLING THE FALSE DISCOVERY RATE - A PRACTICAL AND POWERFUL APPROACH TO MULTIPLE TESTING [J].
BENJAMINI, Y ;
HOCHBERG, Y .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1995, 57 (01) :289-300
[6]   Rank products: a simple, yet powerful, new method to detect differentially regulated genes in replicated microarray experiments [J].
Breitling, R ;
Armengaud, P ;
Amtmann, A ;
Herzyk, P .
FEBS LETTERS, 2004, 573 (1-3) :83-92
[7]  
Carlson M., HS EG DB GENOME WIDE
[8]  
Chakravarty Debyani, 2017, JCO Precis Oncol, V2017, DOI 10.1200/PO.17.00011
[9]   Comprehensive genomic characterization defines human glioblastoma genes and core pathways [J].
Chin, L. ;
Meyerson, M. ;
Aldape, K. ;
Bigner, D. ;
Mikkelsen, T. ;
VandenBerg, S. ;
Kahn, A. ;
Penny, R. ;
Ferguson, M. L. ;
Gerhard, D. S. ;
Getz, G. ;
Brennan, C. ;
Taylor, B. S. ;
Winckler, W. ;
Park, P. ;
Ladanyi, M. ;
Hoadley, K. A. ;
Verhaak, R. G. W. ;
Hayes, D. N. ;
Spellman, Paul T. ;
Absher, D. ;
Weir, B. A. ;
Ding, L. ;
Wheeler, D. ;
Lawrence, M. S. ;
Cibulskis, K. ;
Mardis, E. ;
Zhang, Jinghui ;
Wilson, R. K. ;
Donehower, L. ;
Wheeler, D. A. ;
Purdom, E. ;
Wallis, J. ;
Laird, P. W. ;
Herman, J. G. ;
Schuebel, K. E. ;
Weisenberger, D. J. ;
Baylin, S. B. ;
Schultz, N. ;
Yao, Jun ;
Wiedemeyer, R. ;
Weinstein, J. ;
Sander, C. ;
Gibbs, R. A. ;
Gray, J. ;
Kucherlapati, R. ;
Lander, E. S. ;
Myers, R. M. ;
Perou, C. M. ;
McLendon, Roger .
NATURE, 2008, 455 (7216) :1061-1068
[10]   Combining multiple microarray studies and modeling interstudy variation [J].
Choi, Jung Kyoon ;
Yu, Ungsik ;
Kim, Sangsoo ;
Yoo, Ook Joon .
BIOINFORMATICS, 2003, 19 :i84-i90