Protein-Ligand Docking in the Machine-Learning Era

被引:56
作者
Yang, Chao [1 ]
Chen, Eric Anthony [1 ]
Zhang, Yingkai [1 ,2 ]
机构
[1] NYU, Dept Chem, New York, NY 10003 USA
[2] NYU Shanghai, NYU ECNU Ctr Computat Chem, Shanghai 200062, Peoples R China
来源
MOLECULES | 2022年 / 27卷 / 14期
基金
美国国家卫生研究院;
关键词
molecular docking; virtual screening; protein-ligand scoring function; machine learning; deep learning; datasets; CSAR BENCHMARK EXERCISE; HUMAN METABOLOME DATABASE; AIDED DRUG DISCOVERY; SCORING FUNCTION; MOLECULAR DOCKING; BINDING-AFFINITY; NEURAL-NETWORK; 3-DIMENSIONAL STRUCTURES; BIOMOLECULAR STRUCTURES; CONFORMER GENERATION;
D O I
10.3390/molecules27144568
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Molecular docking plays a significant role in early-stage drug discovery, from structure-based virtual screening (VS) to hit-to-lead optimization, and its capability and predictive power is critically dependent on the protein-ligand scoring function. In this review, we give a broad overview of recent scoring function development, as well as the docking-based applications in drug discovery. We outline the strategies and resources available for structure-based VS and discuss the assessment and development of classical and machine learning protein-ligand scoring functions. In particular, we highlight the recent progress of machine learning scoring function ranging from descriptor-based models to deep learning approaches. We also discuss the general workflow and docking protocols of structure-based VS, such as structure preparation, binding site detection, docking strategies, and post-docking filter/re-scoring, as well as a case study on the large-scale docking-based VS test on the LIT-PCBA data set.
引用
收藏
页数:24
相关论文
共 204 条
  • [1] Computer Aided Drug Design for Multi-Target Drug Design: SAR/QSAR, Molecular Docking and Pharmacophore Methods
    Abdolmaleki, Azizeh
    Ghasemi, Jahan B.
    Ghasemi, Fatemeh
    [J]. CURRENT DRUG TARGETS, 2017, 18 (05) : 556 - 575
  • [2] Recent Advances in Ligand-Based Drug Design: Relevance and Utility of the Conformationally Sampled Pharmacophore Approach
    Acharya, Chayan
    Coop, Andrew
    Polli, James E.
    MacKerell, Alexander D., Jr.
    [J]. CURRENT COMPUTER-AIDED DRUG DESIGN, 2011, 7 (01) : 10 - 22
  • [3] CACHE (Critical Assessment of Computational Hit-finding Experiments): A public-private partnership benchmarking initiative to enable the development of computational methods for hit-finding
    Ackloo, Suzanne
    Al-awar, Rima
    Amaro, Rommie E.
    Arrowsmith, Cheryl H.
    Azevedo, Hatylas
    Batey, Robert A.
    Bengio, Yoshua
    Betz, Ulrich A. K.
    Bologa, Cristian G.
    Chodera, John D.
    Cornell, Wendy D.
    Dunham, Ian
    Ecker, Gerhard F.
    Edfeldt, Kristina
    Edwards, Aled M.
    Gilson, Michael K.
    Gordijo, Claudia R.
    Hessler, Gerhard
    Hillisch, Alexander
    Hogner, Anders
    Irwin, John J.
    Jansen, Johanna M.
    Kuhn, Daniel
    Leach, Andrew R.
    Lee, Alpha A.
    Lessel, Uta
    Morgan, Maxwell R.
    Moult, John
    Muegge, Ingo
    Oprea, Tudor, I
    Perry, Benjamin G.
    Riley, Patrick
    Rousseaux, Sophie A. L.
    Saikatendu, Kumar Singh
    Santhakumar, Vijayaratnam
    Schapira, Matthieu
    Scholten, Cora
    Todd, Matthew H.
    Vedadi, Masoud
    Volkamer, Andrea
    Willson, Timothy M.
    [J]. NATURE REVIEWS CHEMISTRY, 2022, 6 (04) : 287 - 295
  • [4] Machine learning classification can reduce false positives in structure-based virtual screening
    Adeshina, Yusuf O.
    Deeds, Eric J.
    Karanicolas, John
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2020, 117 (31) : 18477 - 18488
  • [5] Machine-learning scoring functions to improve structure-based binding affinity prediction and virtual screening
    Ain, Qurrat Ul
    Aleksandrova, Antoniya
    Roessler, Florian D.
    Ballester, Pedro J.
    [J]. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE, 2015, 5 (06) : 405 - 424
  • [6] DOCK 6: Impact of New Features and Current Docking Performance
    Allen, William J.
    Balius, Trent E.
    Mukherjee, Sudipto
    Brozell, Scott R.
    Moustakas, Demetri T.
    Lang, P. Therese
    Case, David A.
    Kuntz, Irwin D.
    Rizzo, Robert C.
    [J]. JOURNAL OF COMPUTATIONAL CHEMISTRY, 2015, 36 (15) : 1132 - 1156
  • [7] Implementation of the Hungarian Algorithm to Account for Ligand Symmetry and Similarity in Structure-Based Design
    Allen, William J.
    Rizzo, Robert C.
    [J]. JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2014, 54 (02) : 518 - 529
  • [8] Ensemble Docking in Drug Discovery
    Amaro, Rommie E.
    Baudry, Jerome
    Chodera, John
    Demir, Ozlem
    McCammon, J. Andrew
    Miao, Yinglong
    Smith, Jeremy C.
    [J]. BIOPHYSICAL JOURNAL, 2018, 114 (10) : 2271 - 2278
  • [9] H++3.0: automating pK prediction and the preparation of biomolecular structures for atomistic molecular modeling and simulations
    Anandakrishnan, Ramu
    Aguilar, Boris
    Onufriev, Alexey V.
    [J]. NUCLEIC ACIDS RESEARCH, 2012, 40 (W1) : W537 - W541
  • [10] [Anonymous], 2016, KDD16 P 22 ACM, DOI DOI 10.1145/2939672.2939785