The deep-sea teleost cornea: a comparative study of gadiform fishes

被引:0
|
作者
Collin, SP [1 ]
Collin, HB
机构
[1] Univ Western Australia, Dept Zool, Marine Neurobiol Lab, Nedlands, WA 6907, Australia
[2] Univ Melbourne, Dept Optometry & Visual Sci, Parkville, Vic 3052, Australia
关键词
cornea; ultrastructure; deep-sea; iridescent layer; spectacle; fishes;
D O I
暂无
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
The corneal structure of three deep-sea species of teleosts (Gadiformes, Teleostei) from different depths (250-4000 m) and photic zones are examined at the level of the light and electron microscopes. Each species shows a similar but complex arrangement of layers with a cornea split into dermal and scleral components. The dermal cornea comprises an epithelium overlying a basement membrane and a dermal stroma with sutures and occasional keratocytes. Nezumia aequalis is the only species to possess a Bowman's layer, although it is not well-developed. The scleral cornea is separated from the dermal cornea by a mucoid layer and, in contrast to shallow-water species, is divided into three main layers; an anterior scleral stroma, a middle or iridescent layer and a posterior scleral stroma. The iridescent layer of collagen and intercalated cells or cellular processes is bounded by a layer of cells and the posterior scleral stroma overlies a Descemet's membrane and an endothelium. In the relatively shallow-water Microgadus proximus, the keratocytes of the dermal stroma, the cells of the iridescent layer and the endothelial cells all contain aligned endoplasmic reticulum, which may elicit an iridescent reflex. No alignment of the endoplasmic reticulum was found in N. aequalis or Coryphanoides (Nematonurus) armatus. The relative differences between shallow-water and deep-sea corneas are discussed in relation to the constraints of light, depth and temperature.
引用
收藏
页码:325 / 336
页数:12
相关论文
共 50 条
  • [31] MICROBIAL POTENTIAL IN DEEP-SEA SEDIMENTS
    BOLLIGER, R
    HANSELMANN, KW
    BACHOFEN, R
    EXPERIENTIA, 1991, 47 (06): : 517 - 523
  • [32] Diversity of the arctic deep-sea benthos
    Bodil B.A.
    Ambrose Jr. W.G.
    Bergmann M.
    Clough L.M.
    Gebruk A.V.
    Hasemann C.
    Iken K.
    Klages M.
    MacDonald I.R.
    Renaud P.E.
    Schewe I.
    Soltwedel T.
    Włodarska-Kowalczuk M.
    Marine Biodiversity, 2011, 41 (1) : 87 - 107
  • [33] Giant eggs in a deep-sea squid
    Hoving, Henk-Jan T.
    Haddock, Steven H. D.
    Robison, Bruce H.
    Seibel, Brad A.
    ECOLOGY, 2024, 105 (07)
  • [34] Deep-sea pollen research in China
    SUN Xiangjun1
    2. Key Laboratory of Marine Geology
    ChineseScienceBulletin, 2003, (20) : 2155 - 2164
  • [35] Deep-sea ecosystems of the Indian ocean
    Ingole, B
    Koslow, JA
    INDIAN JOURNAL OF MARINE SCIENCES, 2005, 34 (01): : 27 - 34
  • [36] Microbes in deep-sea anoxic basins
    Brusa, T
    DelPuppo, E
    Ferrari, A
    Rodondi, G
    Andreis, C
    Pellegrini, S
    MICROBIOLOGICAL RESEARCH, 1997, 152 (01) : 45 - 56
  • [37] On the visual pigments of deep-sea fish
    Douglas, RH
    Partridge, JC
    JOURNAL OF FISH BIOLOGY, 1997, 50 (01) : 68 - 85
  • [38] Dive Deep: Bioenergetic Adaptation of Deep-Sea Animals
    Yagi, Mitsuharu
    Anzai, Sayano
    Tanaka, Shogo
    ZOOLOGICAL SCIENCE, 2025, 42 (01) : 83 - 95
  • [39] Microbiology of deep-sea carbon cycling
    Liu, Rulong
    Wang, Yong
    Webster, Gordon
    FRONTIERS IN MICROBIOLOGY, 2023, 14
  • [40] The deep-sea neutrino telescope ANTARES
    Carr, J
    PROCEEDINGS OF THE FOURTEENTH (2004) INTERNATIONAL OFFSHORE AND POLAR ENGINEERING CONFERENCE, VOL 1, 2004, : 18 - 20