Discretization of Gradient Elasticity Problems Using C1 Finite Elements

被引:6
作者
Papanicolopulos, Stefanos-Aldo [1 ]
Zervos, A. [2 ]
Vardoulakis, Ioannis [3 ]
机构
[1] Natl Tech Univ Athens, Dept Mech, Iroon Polytech 5, Zografos 15773, Greece
[2] Univ Southampton, Sch Civil Engn & Environm, Southampton SO17 1BJ, Hants, England
[3] Natl Tech Univ Athens, GR-10682 Athens, Greece
来源
MECHANICS OF GENERALIZED CONTINU A: ONE HUNDRED YEARS AFTER THE COSSERATS | 2010年 / 21卷
基金
欧洲研究理事会;
关键词
LOCALIZATION; ELASTOPLASTICITY; FORMULATION; MODEL;
D O I
10.1007/978-1-4419-5695-8_28
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Strain-gradient theories have been used to model a variety of problems (such as elastic deformation, fracture behavior and plasticity) where size effect is of importance. Their use with the finite element method, however, has the drawback that specially designed elements are needed to obtain correct results. This work presents an overview of the use of elements with C-1 continuous interpolation for strain-gradient models, using gradient elasticity as an example. After showing how the C-1 requirement arises and giving details concerning the implementation of specific elements, a theoretical comparison is made between elements based on this approach and elements resulting from the use of some alternative formulations.
引用
收藏
页码:269 / +
页数:3
相关论文
共 21 条
[1]   Mixed finite element formulations of strain-gradient elasticity problems [J].
Amanatidou, E ;
Aravas, N .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2002, 191 (15-16) :1723-1751
[2]   TUBA FAMILY OF PLATE ELEMENTS FOR MATRIX DISP LACEMENT METHOD [J].
ARGYRIS, JH ;
FRIED, I ;
SCHARPF, DW .
AERONAUTICAL JOURNAL, 1968, 72 (692) :701-&
[3]   Numerical modeling of size effects with gradient elasticity - Formulation, meshless discretization and examples [J].
Askes, H ;
Aifantis, EC .
INTERNATIONAL JOURNAL OF FRACTURE, 2002, 117 (04) :347-358
[4]   Implicit gradient elasticity [J].
Askes, Harm ;
Gutierrez, Miguel A. .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2006, 67 (03) :400-416
[5]   One-dimensional localisation studied with a second grade model [J].
Chambon, R ;
Caillerie, D ;
El Hassan, N .
EUROPEAN JOURNAL OF MECHANICS A-SOLIDS, 1998, 17 (04) :637-656
[6]   A HIGHER-ORDER TRIANGULAR PLATE BENDING ELEMENT REVISITED [J].
DASGUPTA, S ;
SENGUPTA, D .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1990, 30 (03) :419-430
[7]   Large strain finite element analysis of a local second gradient model: application to localization [J].
Matsushima, T ;
Chambon, R ;
Caillerie, D .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2002, 54 (04) :499-521
[8]  
Mindlin R. D., 1968, Int. J. Solids Struct, V4, P109, DOI [DOI 10.1016/0020-7683(68)90036-X, 10.1016/0020-7683(68)90036-X]
[9]   MICRO-STRUCTURE IN LINEAR ELASTICITY [J].
MINDLIN, RD .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1964, 16 (01) :51-78
[10]   A three-dimensional C1 finite element for gradient elasticity [J].
Papanicolopulos, S. -A. ;
Zervos, A. ;
Vardoulakis, I. .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2009, 77 (10) :1396-1415