Classical and quantum study of the motion of a particle in a gravitational field

被引:25
作者
Berberan-Santos, M
Bodunov, E
Pogliani, L
机构
[1] Univ Calabria, Dipartimento Chim, I-87030 Arcavacata Di Rende, CS, Italy
[2] Inst Super Tecn, Ctr Quim Fis Mol, P-1049001 Lisbon, Portugal
[3] Petersburg State Transport Univ, Dept Phys, St Petersburg, Russia
关键词
motion of a particle; gravitation; classical case; quantum case;
D O I
10.1007/s10910-004-1443-y
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The classical and the quantum mechanical description of a one-dimensional motion of a particle in the presence of a gravitational field is thoroughly discussed. The attention is centered on the evolution of classical and quantum mechanical position probability distribution function. The classical case has been compared with three different quantum cases: (a) a quantum stationary case, (b) a quantum non-stationary zero approximation case, where the wave packet has the shape of the first eigenfunction, and (c) a quantum non-stationary general case, where the wave packet is a superposition of stationary states.
引用
收藏
页码:101 / 115
页数:15
相关论文
共 24 条
  • [1] Abramovitz M., 1972, Handbook of Mathematical Functions, V10th
  • [2] QUANTUM BOUNCER IN A CLOSED COURT
    AGUILERANAVARRO, VC
    IWAMOTO, H
    LEYKOO, E
    ZIMERMAN, AH
    [J]. AMERICAN JOURNAL OF PHYSICS, 1981, 49 (07) : 648 - 651
  • [3] Liquid-vapor equilibrium in a gravitational field
    Berberan-Santos, MN
    Bodunov, EN
    Pogliani, L
    [J]. AMERICAN JOURNAL OF PHYSICS, 2002, 70 (04) : 438 - 443
  • [4] On the barometric formula
    BerberanSantos, MN
    Bodunov, EN
    Pogliani, L
    [J]. AMERICAN JOURNAL OF PHYSICS, 1997, 65 (05) : 404 - 412
  • [5] The evolution and revival structure of localized quantum wave packets
    Bluhm, R
    Kostelecky, VA
    Porter, JA
    [J]. AMERICAN JOURNAL OF PHYSICS, 1996, 64 (07) : 944 - 953
  • [6] BRANDT S, 1985, PICTURE BOOK QUANTUM
  • [7] PATH-INTEGRAL FOR THE MOTION OF A PARTICLE IN A LINEAR POTENTIAL
    BROWN, LS
    ZHANG, Y
    [J]. AMERICAN JOURNAL OF PHYSICS, 1994, 62 (09) : 806 - 808
  • [8] DENNERY P, 1967, MATH PHYSICISTS, P237
  • [9] THE QUANTUM BOUNCER REVISITED
    DESKO, RD
    BORD, DJ
    [J]. AMERICAN JOURNAL OF PHYSICS, 1983, 51 (01) : 82 - 84
  • [10] Expectation value analysis of wave packet solutions for the quantum bouncer: Short-term classical and long-term revival behaviors
    Doncheski, MA
    Robinett, RW
    [J]. AMERICAN JOURNAL OF PHYSICS, 2001, 69 (10) : 1084 - 1090