Evaluation of tribological and mechanical properties of spark plasma sintered Polytetrafluoroethylene/graphene nanocomposite

被引:2
作者
Sithole, T. [1 ]
Sadiku, E. R. [1 ]
Thompson, J. C.
Ray, S. S. [2 ]
机构
[1] Tshwane Univ Technol, Inst NanoEngn Res INER, Dept Chem Met & Mat Engn, ZA-0183 Pretoria, South Africa
[2] DST CSIR Natl Ctr Nanostruct Mat NCNSM, ZA-0001 Pretoria, South Africa
关键词
Spark plasma sintering; Graphene; Polytetrafluoroethylene; Wear; Friction; Nanoindentation; WEAR;
D O I
10.1016/j.matpr.2022.04.810
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Polytetrafluoroethylene (PTFE) and graphene platelet nano powder (GPN) mixtures were sintered using the spark plasma sintering (SPS) process and the microstructure of the composite was studied using a scanning electron microscope (SEM). Nanoindentation was used to evaluate the hardness and creep of the PTFE/GPN nanocomposites. It was found that when the percentage GPN added to the PTFE was 3.25 wt% the hardness of the composite was approximately 182% higher and creep was reduced by about 49% in comparison to unfilled PTFE sintered by the SPS technique. The pin on disc tribometer was used to study the wear rate of the unfilled PTFE and PTFE nanocomposite. The wear rate of all four PTFE/GPN nanocomposites was low when compared to that of unfilled PTFE. The lowest wear rate was observed at 2.25 wt% filler inclusion. This showed that the inclusion of GPN into the PTFE matrix had a positive effect in the wear reduction of the nanocomposite. (C) 2021 The Authors. Published by Elsevier Ltd.
引用
收藏
页码:S151 / S157
页数:7
相关论文
共 50 条
  • [31] Effect of Interfacial Microstructure on Mechanical and Tribological Properties of Cu/WS2 Self-lubricating Composites Sintered by Spark Plasma Sintering
    Zhitao Yu
    Minghui Chen
    Qunchang Wang
    Xiaolan Wang
    Fuhui Wang
    Acta Metallurgica Sinica (English Letters), 2021, 34 : 913 - 924
  • [32] Spark plasma sintering of forsterite nanopowder and mechanical properties of sintered materials
    Hassanzadeh-Tabrizi, S. A.
    CERAMICS INTERNATIONAL, 2017, 43 (17) : 15714 - 15718
  • [33] Microstructure and mechanical properties of the spark plasma sintered TaC/SiC composites
    Liu, Limeng
    Ye, Feng
    Zhang, Zhiguo
    Zhou, Yu
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2011, 529 : 479 - 484
  • [34] MECHANICAL PROPERTIES OF SPARK PLASMA SINTERED ZrC-SiC COMPOSITES
    Sagdic, Sumbule
    Akin, Ipek
    Sahin, Filiz
    Yucel, Onuralp
    Goller, Gultekin
    TMS 2012 141ST ANNUAL MEETING & EXHIBITION - SUPPLEMENTAL PROCEEDINGS, VOL 1: MATERIALS PROCESSING AND INTERFACES, 2012, : 569 - 575
  • [35] Effect of WC incorporation on the microstructure and mechanical properties of Ni625/WC spark plasma sintered composites
    Chen, Yingxuan
    Cui, Hongzhi
    Li, Leigang
    Song, Xiaojie
    Feng, Yipan
    Zhang, Cuiting
    Huang, Wei
    CERAMICS INTERNATIONAL, 2024, 50 (10) : 16987 - 16997
  • [36] Effect of Carbon and Basalt Fibers with Ultrafine PTFE on the Mechanical and Tribological Properties of Polytetrafluoroethylene
    Vasilev, A. P.
    Struchkova, T. S.
    Okhlopkova, A. A.
    Dyakonov, A. A.
    Alekseev, A. G.
    MECHANICS, RESOURCE AND DIAGNOSTICS OF MATERIALS AND STRUCTURES (MRDMS-2020): PROCEEDING OF THE 14TH INTERNATIONAL CONFERENCE ON MECHANICS, RESOURCE AND DIAGNOSTICS OF MATERIALS AND STRUCTURES, 2020, 2315
  • [37] Microstructure and mechanical properties of spark plasma sintered austenitic ODS steel
    Ninawe, P. S.
    Ganesh, S.
    Karthik, P. Sai
    Chandrasekhar, S. B.
    Vijay, R.
    ADVANCED POWDER TECHNOLOGY, 2022, 33 (06)
  • [38] Microstructure and mechanical properties of spark plasma sintered tungsten heavy alloys
    Senthilnathan, N.
    Annamalai, A. Raja
    Venkatachalam, G.
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2018, 710 : 66 - 73
  • [39] Microstructure and mechanical properties of spark plasma sintered AlCoFeMnNi high entropy alloy (HEA)-carbon nanotube (CNT) nanocomposite
    Bahrami, Abbas
    Mohammadnejad, Ali
    Sajadi, Mahnaz
    JOURNAL OF ALLOYS AND COMPOUNDS, 2021, 862
  • [40] Mechanical and tribological properties of nanocomposite TiSiN coatings
    Cheng, Y. H.
    Browne, T.
    Heckerman, B.
    Meletis, E. I.
    SURFACE & COATINGS TECHNOLOGY, 2010, 204 (14) : 2123 - 2129