Concrete-like high sulfur content cathodes with enhanced electrochemical performance for lithium-sulfur batteries

被引:16
作者
Gan, Bolan [1 ]
Tang, Kaikai [1 ]
Chen, Yali [1 ]
Wang, Dandan [1 ]
Wang, Na [1 ]
Li, Wenxian [2 ]
Wang, Yong [1 ]
Liu, Hao [3 ]
Wang, Guoxiu [3 ]
机构
[1] Shanghai Univ, Sch Environm & Chem Engn, Joint Int Lab Environm & Energy Frontier Mat, Shanghai 200444, Peoples R China
[2] Shanghai Univ, Sch Mat Sci & Engn, Shanghai 200444, Peoples R China
[3] Univ Technol Sydney, Fac Sci, Ctr Clean Energy Technol, Sch Math & Phys Sci, Sydney, NSW 2007, Australia
来源
JOURNAL OF ENERGY CHEMISTRY | 2020年 / 42卷
基金
澳大利亚研究理事会; 中国国家自然科学基金;
关键词
Lithium-sulfur batteries; Cathode; Polymer coating; N-doping; CARBON; POLYSULFIDES; NANOSHEETS;
D O I
10.1016/j.jechem.2019.06.003
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
Nowadays, lithium-sulfur batteries have attracted numerous attention due to their high specific capacity, high energy density, low cost and environmental benignancy. However, there are some critical challenges to be overcome such as low electronic conductivity and capacity fading caused by shuttle effect. Many attempts have been conducted to improve the electrochemical performance by designing effective sulfur hosts. In this paper, we synthesize a concrete-like sulfur/carbon cathode with high sulfur content (84%) by using 3D macroporous hosts with high pore volume. Sophisticated strategies of using polarized carbon framework and polymer coating are applied to synergistically control the dissolution of polysulfides so that the capacity retention and high rate performance can be remarkably enhanced. As a result, the composite exhibits a specific discharge capacity of 820 mAh g(-1) at a discharge current of 800 mA g(-1) (approximate to 0.5 C) after 100 cycles, calculated on the integrated mass of composite, which is superior to most report results. (C) 2019 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by Elsevier B.V. and Science Press. All rights reserved.
引用
收藏
页码:174 / 179
页数:6
相关论文
共 39 条
[1]   Facile Synthesis of Crumpled Nitrogen-Doped MXene Nanosheets as a New Sulfur Host for Lithium-Sulfur Batteries [J].
Bao, Weizhai ;
Liu, Lin ;
Wang, Chengyin ;
Choi, Sinho ;
Wang, Dan ;
Wang, Guoxiu .
ADVANCED ENERGY MATERIALS, 2018, 8 (13)
[2]  
Bruce PG, 2012, NAT MATER, V11, P19, DOI [10.1038/nmat3191, 10.1038/NMAT3191]
[3]   Multi-chambered micro/mesoporous carbon nanocubes as new polysulfides reserviors for lithium-sulfur batteries with long cycle life [J].
Chen, Shuangqiang ;
Sun, Bing ;
Xie, Xiuqiang ;
Mondal, Anjon Kumar ;
Huang, Xiaodan ;
Wang, Guoxiu .
NANO ENERGY, 2015, 16 :268-280
[4]   3D Hyperbranched Hollow Carbon Nanorod Architectures for High-Performance Lithium-Sulfur Batteries [J].
Chen, Shuangqiang ;
Huang, Xiaodan ;
Liu, Hao ;
Sun, Bing ;
Yeoh, Waikong ;
Li, Kefei ;
Zhang, Jinqiang ;
Wang, Guoxiu .
ADVANCED ENERGY MATERIALS, 2014, 4 (08)
[5]   Combining theory and experiment in lithium-sulfur batteries: Current progress and future perspectives [J].
Chen, Xiang ;
Hou, Tingzheng ;
Persson, Kristin A. ;
Zhang, Qiang .
MATERIALS TODAY, 2019, 22 :142-158
[6]   Aligned carbon nanotube/sulfur composite cathodes with high sulfur content for lithium-sulfur batteries [J].
Cheng, Xin-Bing ;
Huang, Jia-Qi ;
Zhang, Qiang ;
Peng, Hong-Jie ;
Zhao, Meng-Qiang ;
Wei, Fei .
NANO ENERGY, 2014, 4 :65-72
[7]   Rational Design of Statically and Dynamically Stable Lithium-Sulfur Batteries with High Sulfur Loading and Low Electrolyte/Sulfur Ratio [J].
Chung, Sheng-Heng ;
Manthiram, Arumugam .
ADVANCED MATERIALS, 2018, 30 (06)
[8]   Mesoporous Titanium Nitride-Enabled Highly Stable Lithium-Sulfur Batteries [J].
Cui, Zhiming ;
Zu, Chenxi ;
Zhou, Weidong ;
Manthiram, Arumugam ;
Goodenough, John B. .
ADVANCED MATERIALS, 2016, 28 (32) :6926-+
[9]   Single-wall carbon nanotube network enabled ultrahigh sulfur-content electrodes for high-performance lithium-sulfur batteries [J].
Fang, Ruopian ;
Li, Guoxian ;
Zhao, Shiyong ;
Yin, Lichang ;
Du, Kui ;
Hou, Pengxiang ;
Wang, Shaogang ;
Cheng, Hui-Ming ;
Liu, Chang ;
Li, Feng .
NANO ENERGY, 2017, 42 :205-214
[10]   Ruthenium decorated hierarchically ordered macro-mesoporous carbon for lithium oxygen batteries [J].
Guo, Xin ;
Sun, Bing ;
Zhang, Jinqiang ;
Liu, Hao ;
Wang, Guoxiu .
JOURNAL OF MATERIALS CHEMISTRY A, 2016, 4 (25) :9774-9780