Self-assembling protein nanocages for modular enzyme assembly by orthogonal bioconjugation

被引:7
作者
Berckman, Emily A. [1 ,2 ]
Chen, Wilfred [1 ]
机构
[1] Univ Delaware, Dept Chem & Biomol Engn, Newark, DE 19716 USA
[2] Univ Delaware, Dept Chem & Biochem, Newark, DE 19716 USA
基金
美国国家科学基金会;
关键词
cellulosome; E2; nanocage; HBV; post translational ligation strategy; self-assembling protein nanocage; synthetic metabolon; CELLULOSE; DESIGN; SCAFFOLDS; DISPLAY; SURFACE; ENCAPSULATION; COMPLEX; ETHANOL;
D O I
10.1002/btpr.3190
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
The wide variety of enzymatic pathways that can benefit from enzyme scaffolding is astronomical. While enzyme co-localization based on protein, DNA, and RNA scaffolds has been reported, we still lack scaffolds that offer well-defined and uniform three-dimensional structures for enzyme organization. Here we reported a new approach for protein co-localization using naturally occurring protein nanocages as a scaffold. Two different nanocages, the 25 nm E2 and the 34 nm heptatitis B virus, were used to demonstrate the successfully co-localization of the endoglucanase CelA and cellulose binding domain using the robust SpyTag/SpyCatcher bioconjugation chemistry. Because of the simplicity of the assembly, this strategy is useful not only for in vivo enzyme cascading but also the potential for in vivo applications as well.
引用
收藏
页数:7
相关论文
共 44 条
[11]   Synthetic protein scaffolds provide modular control over metabolic flux [J].
Dueber, John E. ;
Wu, Gabriel C. ;
Malmirchegini, G. Reza ;
Moon, Tae Seok ;
Petzold, Christopher J. ;
Ullal, Adeeti V. ;
Prather, Kristala L. J. ;
Keasling, Jay D. .
NATURE BIOTECHNOLOGY, 2009, 27 (08) :753-U107
[12]   Synergistic saccharification, and direct fermentation to ethanol, of amorphous cellulose by use of an engineered yeast strain codisplaying three types of cellulolytic enzyme [J].
Fujita, Y ;
Ito, J ;
Ueda, M ;
Fukuda, H ;
Kondo, A .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2004, 70 (02) :1207-1212
[13]   Encapsulation as a Strategy for the Design of Biological Compartmentalization [J].
Giessen, Tobias W. ;
Silver, Pamela A. .
JOURNAL OF MOLECULAR BIOLOGY, 2016, 428 (05) :916-927
[14]   Modular Hepatitis B Virus-like Particle Platform for Biosensing and Drug Delivery [J].
Hartzell, Emily J. ;
Lieser, Rachel M. ;
Sullivan, Millicent O. ;
Chen, Wilfred .
ACS NANO, 2020, 14 (10) :12642-12651
[15]   Natural and artificial protein cages: design, structure and therapeutic applications [J].
Heddle, Jonathan Gardiner ;
Chakraborti, Soumyananda ;
Iwasaki, Kenji .
CURRENT OPINION IN STRUCTURAL BIOLOGY, 2017, 43 :148-155
[16]   Encapsidated Atom-Transfer Radical Polymerization in Qβ Virus-like Nanoparticles [J].
Hovlid, Marisa L. ;
Lau, Jolene L. ;
Breitenkamp, Kurt ;
Higginson, Cody J. ;
Laufer, Burkhardt ;
Manchester, Marianne ;
Finn, M. G. .
ACS NANO, 2014, 8 (08) :8003-8014
[17]   Power to the protein: enhancing and combining activities using the Spy toolbox [J].
Keeble, Anthony H. ;
Howarth, Mark .
CHEMICAL SCIENCE, 2020, 11 (28) :7281-7291
[18]   A nanocluster design for the construction of artificial cellulosomes [J].
Kim, Do-Myoung ;
Nakazawa, Hikaru ;
Umetsu, Mitsuo ;
Matsuyama, Takashi ;
Ishida, Nobuhiro ;
Ikeuchi, Akinori ;
Takahashi, Haruo ;
Asano, Ryutaro ;
Kumagai, Izumi .
CATALYSIS SCIENCE & TECHNOLOGY, 2012, 2 (03) :499-503
[19]   Enhancement of Cellulolytic Enzyme Activity by Clustering Cellulose Binding Domains on Nanoscaffolds [J].
Kim, Do-Myoung ;
Umetsu, Mitsuo ;
Takai, Kyo ;
Matsuyama, Takashi ;
Ishida, Nobuhiro ;
Takahashi, Haruo ;
Asano, Ryutaro ;
Kumagai, Izumi .
SMALL, 2011, 7 (05) :656-664
[20]   Redirection of pyruvate flux toward desired metabolic pathways through substrate channeling between pyruvate kinase and pyruvate-converting enzymes in Saccharomyces cerevisiae [J].
Kim, Sujin ;
Bae, Sang-Jeong ;
Hahn, Ji-Sook .
SCIENTIFIC REPORTS, 2016, 6