Contactless Fall Detection Using Time-Frequency Analysis and Convolutional Neural Networks

被引:65
|
作者
Sadreazami, Hamidreza [1 ]
Bolic, Miodrag [1 ]
Rajan, Sreeraman [2 ]
机构
[1] Univ Ottawa, Sch Elect Engn & Comp Sci, Ottawa, ON K1N 6N5, Canada
[2] Carleton Univ, Dept Syst & Comp Engn, Ottawa, ON K1S 5B6, Canada
关键词
Radar; Feature extraction; Time-frequency analysis; Radar imaging; Fall detection; Ultra wideband radar; Radar detection; Convolutional neural network; fall detection; time-frequency analysis; ultrawideband (UWB) radar; RADAR; CLASSIFICATION; RECOGNITION; SIGNATURES; ALGORITHM; FEATURES; SYSTEM;
D O I
10.1109/TII.2021.3049342
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Automatic detection of a falling person based on noncontact sensing is a challenging problem with applications in smart homes for elderly care. In this article, we propose a radar-based fall detection technique based on time-frequency analysis and convolutional neural networks. The time-frequency analysis is performed by applying the short-time Fourier transform to each radar return signal. The resulting spectrograms are converted into binary images, which are fed into the convolutional neural network. The network is trained using labeled examples of fall and nonfall activities. Our method employs high-level feature learning, which distinguishes it from previously studied methods that use heuristic feature extraction. The performance of the proposed method is evaluated by conducting several experiments on a set of radar return signals. We show that our method distinguishes falls from nonfalls with 98.37% precision and 97.82% specificity, while maintaining a low false-alarm rate, which is superior to existing methods. We also show that our proposed method is robust in that it successfully distinguishes falls from nonfalls when trained on subjects in one room, but tested on different subjects in a different room. In the proposed convolutional neural network, the hierarchical features extracted from the radar return signals are the key to understand the fundamental composition of human activities and determine whether or not a fall has occurred during human daily activities. Our method may be extended to other radar-based applications such as apnea detection and gesture detection.
引用
收藏
页码:6842 / 6851
页数:10
相关论文
共 50 条
  • [1] Automatic grinding burn recognition based on time-frequency analysis and convolutional neural networks
    Hubner, Henrique Butzlaff
    Duarte, Marcus Antonio Viana
    da Silva, Rosemar Batista
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2020, 110 (7-8): : 1833 - 1849
  • [2] Seismic Event and Phase Detection Using Time-Frequency Representation and Convolutional Neural Networks
    Dokht, Ramin M. H.
    Kao, Honn
    Visser, Ryan
    Smith, Brindley
    SEISMOLOGICAL RESEARCH LETTERS, 2019, 90 (02) : 481 - 490
  • [3] A Novel Method to Detect Multiple Arrhythmias Based on Time-Frequency Analysis and Convolutional Neural Networks
    Wu, Ziqian
    Lan, Tianjie
    Yang, Cuiwei
    Nie, Zhenning
    IEEE ACCESS, 2019, 7 : 170820 - 170830
  • [4] Detection of microseismic events based on time-frequency analysis and convolutional neural network
    Sheng L.
    Xu X.
    Wang W.
    Gao M.
    Zhongguo Shiyou Daxue Xuebao (Ziran Kexue Ban)/Journal of China University of Petroleum (Edition of Natural Science), 2021, 45 (05): : 54 - 63
  • [5] Fall detection using mixtures of convolutional neural networks
    Thao V. Ha
    Hoang M. Nguyen
    Son H. Thanh
    Binh T. Nguyen
    Multimedia Tools and Applications, 2024, 83 : 18091 - 18118
  • [6] Fall detection using mixtures of convolutional neural networks
    Ha, Thao V.
    Nguyen, Hoang M.
    Thanh, Son H.
    Nguyen, Binh T.
    MULTIMEDIA TOOLS AND APPLICATIONS, 2024, 83 (06) : 18091 - 18118
  • [7] Automatic grinding burn recognition based on time-frequency analysis and convolutional neural networks
    Henrique Butzlaff Hübner
    Marcus Antônio Viana Duarte
    Rosemar Batista da Silva
    The International Journal of Advanced Manufacturing Technology, 2020, 110 : 1833 - 1849
  • [8] High-frequency radar aircraft detection method based on neural networks and time-frequency algorithm
    Li, Ting
    Yang, Guobin
    Wang, Pengxun
    Chen, Gang
    Zhou, Chen
    Zhao, Zhengyu
    Huang, Shuo
    IET RADAR SONAR AND NAVIGATION, 2013, 7 (08): : 875 - 880
  • [9] Convolutional Recurrent Neural Networks for Posture Analysis in Fall Detection
    Lin, Hsiu-Yu
    Hsueh, Yu-Ling
    Lie, Wen-Nung
    JOURNAL OF INFORMATION SCIENCE AND ENGINEERING, 2018, 34 (03) : 577 - 591
  • [10] RADAR-BASED FALL DETECTION EXPLOITING TIME-FREQUENCY FEATURES
    Rivera, Luis Ramirez
    Ulmer, Eric
    Zhang, Yimin D.
    Tao, Wenbing
    Amin, Moeness G.
    2014 IEEE CHINA SUMMIT & INTERNATIONAL CONFERENCE ON SIGNAL AND INFORMATION PROCESSING (CHINASIP), 2014, : 713 - 717