Additive manufacturing of tungsten using directed energy deposition for potential nuclear fusion application

被引:44
作者
Xie, Jichang [1 ]
Lu, Haifei [2 ]
Lu, Jinzhong [2 ]
Song, Xinling [1 ]
Wu, Shikai [3 ]
Lei, Jianbo [1 ]
机构
[1] Tiangong Univ, Laser Technol Inst, Tianjin 300387, Peoples R China
[2] Jiangsu Univ, Sch Mech Engn, Zhenjiang 212013, Jiangsu, Peoples R China
[3] Beijing Univ Technol, Beijing Engn Res Ctr Laser Technol, Beijing 100124, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
Tungsten; Nuclear fusion; Directed energy deposition; Microstructure; Thermal conductivity; LASER; DIVERTOR;
D O I
10.1016/j.surfcoat.2021.126884
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Building better nuclear fusion equipment with reduced cost is important for a sustainable society. In this study, pure tungsten is deposited on different steel substrates by directed energy deposition (DED). Specifically, the deposited layers with graded tungsten content by low and high laser scanning speed are fabricated. In addition, the processing parameters were optimized by analyzing the microstructure, phases and defects. Results show that the 9-layer sample (3000 W @ 3000 mm/min) exhibits a better thermal performance, which the thermal conductivity is about 73.75 W/(m.K) at room temperature and 147.45 W/(m.K) at 900 degrees C, respectively. Finally, the surface of the manufactured thick deposited layer by high-low combined laser scanning speed can reach a high tungsten content of up to 99.78 wt%. It is believed that the additive manufacturing of pure tungsten by DED can combine the advantages of tungsten and steel substrates, and simplify the manufacturing process of thermonuclear fusion devices.
引用
收藏
页数:17
相关论文
共 43 条
[31]   Crack initiation and propagation behavior of WC particles reinforced Fe-based metal matrix composite produced by laser melting deposition [J].
Wang, Jiandong ;
Li, Liqun ;
Tao, Wang .
OPTICS AND LASER TECHNOLOGY, 2016, 82 :170-182
[32]   Microstructure and strengthening mechanisms of 90W-7Ni-3Fe alloys prepared using laser melting deposition [J].
Wang, Y. P. ;
Ma, S. Y. ;
Yang, X. S. ;
Zhou, Y. Z. ;
Liu, X. ;
Li, J. F. ;
Zhang, J. J. ;
Li, C. ;
Wang, X. Y. ;
Le, G. M. ;
Zhang, Y. .
JOURNAL OF ALLOYS AND COMPOUNDS, 2020, 838
[33]  
Wen S.F, 2018, OPT LASER TECHNOL, V72, P27
[34]   Investigation on microstructure and properties of narrow-gap laser welding on reduced activation ferritic/martensitic steel CLF-1 with a thickness of 35 mm [J].
Wu, Shikai ;
Zhang, Jianchao ;
Yang, Jiaoxi ;
Lu, Junxia ;
Liao, Hongbin ;
Wang, Xiaoyu .
JOURNAL OF NUCLEAR MATERIALS, 2018, 503 :66-74
[35]   Recent progress in R&D on tungsten alloys for divertor structural and plasma facing materials [J].
Wurster, S. ;
Baluc, N. ;
Battabyal, M. ;
Crosby, T. ;
Du, J. ;
Garcia-Rosales, C. ;
Hasegawa, A. ;
Hoffmann, A. ;
Kimura, A. ;
Kurishita, H. ;
Kurtz, R. J. ;
Li, H. ;
Noh, S. ;
Reiser, J. ;
Riesch, J. ;
Rieth, M. ;
Setyawan, W. ;
Walter, M. ;
You, J. -H. ;
Pippan, R. .
JOURNAL OF NUCLEAR MATERIALS, 2013, 442 (1-3) :S181-S189
[36]   In -situ Fe 2 P reinforced bulk Cu -Fe immiscible alloy with nanotwinned Cu produced by selective laser melting [J].
Xie, Min ;
Zhou, Shengfeng ;
Zhao, Shuzhen ;
Jin, Jianbo ;
Chen, Dongchu ;
Zhang, Lai-Chang .
JOURNAL OF ALLOYS AND COMPOUNDS, 2020, 838
[37]   The initiation and propagation mechanism of the overlapping zone cracking during laser solid forming of IN-738LC superalloy [J].
Xu, Jianjun ;
Lin, Xin ;
Guo, Pengfei ;
Dong, Hongbiao ;
Wen, Xiaoli ;
Li, Qiuge ;
Xue, Lei ;
Huang, Weidong .
JOURNAL OF ALLOYS AND COMPOUNDS, 2018, 749 :859-870
[38]   Additive manufacturing of functionally graded metallic materials using laser metal deposition [J].
Yan, Lei ;
Chen, Yitao ;
Liou, Frank .
ADDITIVE MANUFACTURING, 2020, 31
[39]   Cracks avoidance with a modified solid tungsten divertor in ASDEX Upgrade [J].
Zammuto, I. ;
Li, M. ;
Herrmann, A. ;
Jaksic, N. ;
Rohde, V. ;
Balden, M. ;
Vorbrugg, S. ;
Matern, G. ;
Greuner, H. ;
Neu, R. ;
Kallenbach, A. .
FUSION ENGINEERING AND DESIGN, 2018, 136 :1052-1057
[40]   Formation of Nanocrystalline Tungsten by Selective Laser Melting of Tungsten Powder [J].
Zhang, Danqing ;
Cai, Qizhou ;
Liu, Jinhui .
MATERIALS AND MANUFACTURING PROCESSES, 2012, 27 (12) :1267-1270