High-level De novo biosynthesis of arbutin in engineered Escherichia coli

被引:55
作者
Shen, Xiaolin [1 ,2 ]
Wang, Jia [1 ,2 ]
Wang, Jian [3 ]
Chen, Zhenya [1 ,2 ]
Yuan, Qipeng [1 ,2 ]
Yan, Yajun [3 ]
机构
[1] Beijing Univ Chem Technol, State Key Lab Chem Resource Engn, Beijing 100029, Peoples R China
[2] Beijing Univ Chem Technol, Beijing Adv Innovat Ctr Soft Matter Sci & Engn, Beijing 100029, Peoples R China
[3] Univ Georgia, Coll Engn, Athens, GA 30602 USA
基金
中国国家自然科学基金;
关键词
Arbutin; Glycosylation; Shikimate pathway; Metabolic engineering; ALPHA-ARBUTIN; MICROBIAL-PRODUCTION; PATHWAY; ACID; HYDROQUINONE; 4-HYDROXYBENZOATE; TRANSGLUCOSIDASE; PURIFICATION; DERIVATIVES; MECHANISM;
D O I
10.1016/j.ymben.2017.06.001
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Arbutin is a hydroquinone glucoside compound existing in various plants. It is widely used in pharmaceutical and cosmetic industries owing to its well-known skin-lightening property as well as anti-oxidant, anti-microbial, and anti-inflammatory activities. Currently, arbutin is usually produced by plant extraction or enzymatic processes, which suffer from low product yield and expensive processing cost. In this work, we established an artificial pathway in Escherichia coli for high-level production of arbutin from simple carbon sources. First, a 4-hydroxybenzoate 1-hydroxylase from Candida parapsilosis CBS604 and a glucosyltransferase from Rauvolfia serpentina were characterized by in vitro enzyme assays. Introduction of these two genes into E. coli led to the production of 54.71 mg/ L of arbutin from glucose. Further redirection of carbon flux into arbutin biosynthesis pathway by enhancing shikimate pathway genes enabled production of 3.29 g/L arbutin, which is a 60-fold increase compared with the initial strain. Final optimization of glucose concentration added in the culture medium was able to further improve the titer of arbutin to 4.19 g/L in shake flasks experiments, which is around 77-fold higher than that of initial strain. This work established de novo biosynthesis of arbutin from simple carbon sources and provided a generalizable strategy for the biosynthesis of shikimate pathway derived chemicals. The high titer achieved in our engineered strain also indicates the potential for industrial scale bio-manufacturing of arbutin.
引用
收藏
页码:52 / 58
页数:7
相关论文
共 55 条
  • [1] E-coli metabolic engineering for gram scale production of a plant-based anti-inflammatory agent
    Ahmadi, Mahmoud Kamal
    Fang, Lei
    Moscatello, Nicholas
    Pfeifer, Blaine A.
    [J]. METABOLIC ENGINEERING, 2016, 38 : 382 - 388
  • [2] Isoprenoid Pathway Optimization for Taxol Precursor Overproduction in Escherichia coli
    Ajikumar, Parayil Kumaran
    Xiao, Wen-Hai
    Tyo, Keith E. J.
    Wang, Yong
    Simeon, Fritz
    Leonard, Effendi
    Mucha, Oliver
    Phon, Too Heng
    Pfeifer, Blaine
    Stephanopoulos, Gregory
    [J]. SCIENCE, 2010, 330 (6000) : 70 - 74
  • [3] Utilizing genetically engineered bacteria to produce plant-specific glucosides
    Arend, J
    Warzecha, H
    Hefner, T
    Stöckigt, J
    [J]. BIOTECHNOLOGY AND BIOENGINEERING, 2001, 76 (02) : 126 - 131
  • [4] De novo biosynthesis of Gastrodin in Escherichia coli
    Bai, Yanfen
    Yin, Hua
    Bi, Huiping
    Zhuang, Yibin
    Liu, Tao
    Ma, Yanhe
    [J]. METABOLIC ENGINEERING, 2016, 35 : 138 - 147
  • [5] Bang Seo-Hyun, 2008, J Cosmet Dermatol, V7, P189, DOI 10.1111/j.1473-2165.2008.00387.x
  • [6] Microbial synthesis of p-hydroxybenzoic acid from glucose
    Barker, JL
    Frost, JW
    [J]. BIOTECHNOLOGY AND BIOENGINEERING, 2001, 76 (04) : 376 - 390
  • [7] Improving NADPH availability for natural product biosynthesis in Escherichia coli by metabolic engineering
    Chemler, Joseph A.
    Fowler, Zachary L.
    McHugh, Kyle P.
    Koffas, Mattheos A. G.
    [J]. METABOLIC ENGINEERING, 2010, 12 (02) : 96 - 104
  • [8] Isolation of cyanidin 3-glucoside from blue honeysuckle fruits by high-speed counter-current chromatography
    Chen, Liang
    Xin, Xiulan
    Lan, Rong
    Yuan, Qipeng
    Wang, Xiaojie
    Li, Ye
    [J]. FOOD CHEMISTRY, 2014, 152 : 386 - 390
  • [9] Biobased organic acids production by metabolically engineered microorganisms
    Chen, Yun
    Nielsen, Jens
    [J]. CURRENT OPINION IN BIOTECHNOLOGY, 2016, 37 : 165 - 172
  • [10] Purification and properties of 4-hydroxybenzoate 1-hydroxylase (decarboxylating), a novel flavin adenine dinculeotide-dependent monooxygenase from Candida parapsilosis CBS604
    Eppink, MHM
    Boeren, SA
    Vervoort, J
    VanBerkel, WJH
    [J]. JOURNAL OF BACTERIOLOGY, 1997, 179 (21) : 6680 - 6687